
No. 1 i-Technology Magazine in the World

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

MONEY, FREEDOM AND OPEN SOURCE PAGE 40

 JDJ.SYS-CON.COM VOL.11 ISSUE:9

PLUS...

Apache Trinidad
Mailets and Matchers

SWING

RETAILERS PLEASE DISPLAY
UNTIL NOVEMBER 30, 2006

SEE PAGES 58-59
FOR DETAILS

SANTA CLARA CONVENTION CENTER
W W W . A J A X W O R L D E X P O . C O M

OCT 3-4
2 0 0 6

I

JDJad-Quest-0506.indd 1 4/20/06 10:51:53 AM

ince most any two words can and will
be put together in this world, what with
us being Homo Loquens and all, it’s
easy just to shrug when you hear new
colloquies like “social software,” “social

networking,” or “social computing” and dismiss
them as just three more inevitable permutations
in a world of whirling words and phrases.
 But this time, trust me, things are different. I
would go so far as to say that “social computing,”
far from being just a random word-combo along
the lines of wannabe duos like “air walking,”
“base jumping,” “text messaging” and suchlike,
is that fabled “New New Thing” (a reference to
Michael Lewis’s invaluable book of that name,
documenting Netscape’s Jim Clark’s serial Web-
preneurship in the heady days of the Internet
Boom 1.0).
 In other words, Social Computing is about to
turn the Web world upside down.
 Before I explain how and why, let us just lay
to rest one other ghost. There will be those who,
out of nothing but the sheerest prejudice against
computer geeks and geekdom, suggest that
“social computing” is a blatant oxymoron, right
up there with “benevolent despotism.” I have no
truck with such bigots. On the contrary, com-
puting - it turns out - is one of the most social
technological innovations in the last thousand
years.
 Think I’m exaggerating? Read on.
 Social Computing has been defined as cen-
tered on “software that contributes to compel-
ling and effective social interactions” (http://re-
search.microsoft.com/scg/).
 At IBM Research, where the premise of the
Social Computing Group is that it is possible
to design “digital systems that provide a social
context for our activities,” the group character-
izes social computing thus:
 The central hallmark of social computing is
that it relies on the notion of social identity: that
is, it is not just the data that matters, but who
that data “belongs to,” and how the identity of
the “owner” of that data is related to other identi-
ties in the system. More generally, social com-
puting systems are likely to contain components
that support and represent social constructs
such as identity, reputation, trust, accountability,
presence, social roles, and ownership.
 What’s the big deal? Why am claiming that So-
cial Computing is right up there with Quantum
Mechanics in terms of its likely impact on our
modern world?

 The answer to that question has already been
hinted at by Forrester, which has published a
slim, 24-page report on Social Computing sub-
titled “How Networks Erode Institutional Power,
And What to Do About It.” And it has been suc-
cinctly explicated by Dion Hinchcliffe.
 Published in February of this year, the For-
rester report notes:
 To thrive in an era of Social Computing, com-
panies must abandon top-down management
and communication tactics, weave communities
into their products and services, use employees
and partners as marketers, and become part of a
living fabric of brand loyalists.
 Then, linking it directly with “Web 2.0,” Forrester
nails its colors to the mast by drawing a very telling
analogy to help people wrap their minds around
the raw disruptiveness of Social Computing: “Web
2.0 is the building of the Interstate Highway System
in the 1950s; Social Computing is everything
that resulted next (for better or worse): suburban
sprawl, energy dependency, efficient commerce,
Americans’ lust for cheap and easy travel.”
 Hinchcliffe reiterates this point, noting that
one thing is clear, namely that the technologies
of the modern Web are indeed reshaping our
society, particularly of the younger generations
that spend so much of their time there.
 “The consequences could be dramatic,”
Hinchcliffe avers, “in the same way that the
highway systems fundamentally disrupted the
railroad industry.”
 Anyone wishing to explore further can click
through on any of the below.

Further Reading on Social Computing
• Feedster: http://www.feedster.com/search.

php?q=%2522social+computing%2522
• Digg: http://www.digg.com/

?s=social+computing&a=30
• Technorati: http://www.technorati.com/

search/%22social%20computing%22v

Jeremy Geelan is Conference Chair of the AJAXWorld Confer-

ence & Expo series and of the “Real-World Flex” One-Day

Seminar series. From 2000-6, as first editorial director and

then group publisher of SYS-CON Media, he was responsible

for the development of all new titles and i-Technology portals

for the firm, and regularly represented SYS-CON at conferences

and trade shows, speaking to technology audiences both in

North America and overseas. He remains executive producer

and presenter of “Power Panels with Jeremy Geelan” on SYS-

CON.TV, and is now developing new Conferences and One-Day

Seminars for SYS-CON Media & Events.

Editorial

Social Computing Will Turn
 the Web World Upside Down

 Editorial Board

 Java EE Editor: Yakov Fain

 Desktop Java Editor: Joe Winchester

 Eclipse Editor: Bill Dudney

 Enterprise Editor: Ajit Sagar

 Java ME Editor: Michael Yuan

 Back Page Editor: Jason Bell

 Contributing Editor: Calvin Austin

 Contributing Editor: Rick Hightower

 Contributing Editor: Tilak Mitra

 Founding Editor: Sean Rhody

Production
 Lead Designer: Louis F. Cuffari
 Executive Editor: Nancy Valentine
 Research Editor: Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 577 Chestnut Ridge Rd., Woodcliff Lake, NJ 07677

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 577
Chestnut Ridge Road, Woodcliff Lake, NJ 07677. Periodicals post-

age rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offices. Postmaster: Send address changes to: Java

Developer’s Journal, SYS-CON Publications, Inc., 577 Chestnut
Ridge Road, Woodcliff Lake, NJ 07677.

©Copyright
Copyright © 2006 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

S
By Jeremy Geelan

3September 2006JDJ.SYS-CON.com

August 2006 VOLUME:11 ISSUE:8

contents

JDJ (ISSN#1087-6944) is published monthly (12 times
a year) for $69.99 by SYS-CON Publications, Inc., 135

Chestnut Ridge Road, Montvale, NJ 07645. Periodicals
postage rates are paid at Montvale, NJ 07645 and

additional mailing offices. Postmaster: Send address
changes to: JDJ, SYS-CON Publications, Inc., 135

Chestnut Ridge Road, Montvale, NJ 07645.

Editorial

Unofficial History of
Programming: ‘94–’06
by Yakov

. .3
ViEwpoint

Where Are the High-Level Open
Source Design Tools?
by Ed Merks

. .6
MobilE JaVa

Integral Java: A Single Solution for
Bypassing the Pitfalls of
Split Stacks
The future of moble Java

. .8

dMa

Detecting J2EE Problems Before
They Happen
Derived Model Analysis

by Alan West & Gordon Cruickshank

. . .12

Sdo

Data Access Services
How to access relational data in terms of

Service Data Objects

by Kevin Williams & Brent Daniel

. .32
dESktop JaVa ViEwpoint

The Death of Mediocrity
by Joe Winchester

. .48

idE

Managing a Standardized Build
Process Outside of the Eclipse IDE
Point-and-click solution won’t cut it

by Steve Taylor

. .50
awardS

JDJ Editors’ Choice Awards
. .54
JSr watch

The JCP Program:
Beyond the 300 Mark
by Onno Kluyt

. .58
FEEdback

Letters to the Editor
. .60

38by Anil Hemrajani

10
Jakarta Struts &
JavaServer Faces

by Herman Robinson

JDJ Cover Story Features

A Generic JMS Listener
for Apache Axis 1.x

by Parameswaran Seshan

28

 Fpo

5September 2006JDJ.SYS-CON.com

f past Flash Player download numbers are any
indication, Flash Player 9 could have the big-
gest, early adopter audience of all.
 In June 2006, Adobe released Flash Player 9,
the most powerful Flash runtime to date, which

introduced ActionScript 3.0 (an important ECMAS-
cript-compliant update to the ActionScript language),
faster performance through an optimized virtual
machine, and interconnectivity with Adobe Flex 2. The
small download size of Flash Player 9 and strong fea-
tures may be at the core of why developers choose to
deploy Flash applications. Equally important, and not
to be overlooked, are the statistics about how many
computer users already have Flash Player installed,
and how quickly users can download and install or
upgrade to the newest version. As developers, you
want to know that your content and applications can
be immediately experienced by the widest audience.
 Independent research company Millward Brown
conducted a study in June 2006 concluding Flash
Player is on 97.3% of desktops in mature markets,
and Adobe’s own download statistics indicate the cur-
rent demand for Flash Player is strong, as it’s installed
over 5 million times a day (Source: Akamai download
statistics). A lesser-known fact is that each version of
Flash Player has historically taken about 12 months
to reach 80% penetration (Source: NPD Group
Research), demonstrating the consistency of the
adoption curve for each release. The latest quarterly
study takes into account broader and deeper world-
wide statistics and provides a more in-depth account
of worldwide Flash Player penetration than previous
studies. The study surveys users in six countries on a
quarterly basis: United States, Canada, United King-
dom, Germany, France, and Japan. It also includes
mainland China and South Korea every other quarter.
(The margin of error in the Millward Borwn survey is
+-3% with a 95% confidence level.)
 In a previous wave of this study conducted in April
2006 by independent research company NPD Group
Research, Flash Player 8 was at 69% penetration six
months after its release, a considerable jump in the
numbers from Flash Player 5 and 6, which were at 53%
penetration during the same point in their cycles. The
June 2006 study indicates that Flash Player 8 reached
86% penetration, just nine months after release — fur-
ther indication that the demand for the latest versions
of Flash Player is growing year over year.
 In short, these studies highlight that Flash Player is
one of the most pervasive software platforms on the
Web and they suggest that users are adopting the latest
Flash Players more quickly than their predecessors.
 The demand for Flash Player, as demonstrated
by the download numbers, is an indicator of the
widespread use of Flash for creating compelling

experiences on the Web. Increasingly, Websites
like Google Video, YouTube, MySpace, and MTV
are turning to Flash Player and Flash video as their
deployment solution for presenting rich content
to their users. One of the primary reasons behind
the quick adoption of Flash Player across desktops
is that millions of users are consuming content
across popular sites like these.
 Another reason for the ubiquity of Flash Player is
the simplicity of the installation and upgrade process,
along with its small download size. As a developer,
you can continue to rely on the default browser install
experience for ActiveX in Microsoft Internet Explorer
and the Firefox plug-in finder service, which we started
supporting with the Flash Player 8 release. Alternately,
you can now seamlessly upgrade your Website visitors
to the latest Player using Express Install, a Flash-based
experience introduced in Flash Player 8. Use Express
Install to design an in-context upgrade experience for
your content so users never have to leave your site to
get the latest Player. You can also gracefully handle
user cancellation and avoid system restarts. Learn
more about implementing Express Install in your Flash
applications in this article: Experiencing Flash Player
Express Install (http://www.adobe.com/devnet/flash-
player/articles/express_install.html). I also highly
recommend watching the short demo of the Express
Install user experience in the piece. To find out more
about Player detection, Player installation and Express
Install, see the Flash Player Detection Kit (http://www.
adobe.com/products/flashplayer/download/detec-
tion_kit/). You can also check out SWFObject, another
popular solution for detection and Express Install
developed by a member of the community.
 The strong penetration of Flash Player, the ease
of install and upgrade experience for end users,
and the new features in Flash Player 9 make it
a top deployment choice for your Rich Internet
Applications. To learn more about new features in
Flash Player 9 and how to use them, see my article,
Introducing Flash Player 9 (http://www.adobe.
com/devnet/logged_in/ehuang_flashplayer9.
html), and visit the Flash Player Developer Center.
 To learn more about the Millward Brown and
NPD studies, as well as methodologies used, see
the following resources:
• Results for the Millward Brown June 2006

study: http://www.adobe.com/products/play-
er_census/flashplayer/

• Methodology for the Millward Brown June 2006
study: http://www.adobe.com/products/play-
er_census/methodology/

• Flash Player penetration by version: http://
www.adobe.com/products/player_census/
flashplayer/version_penetration.html

ViEwpoint

The Time Is Now for
Adobe Flash Player 9

President and CEO:

 Fuat Kircaali fuat@sys-con.com

Group Publisher:

 Jeremy Geelan jeremy@sys-con.com

Advertising

Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com

Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com

 Robyn Forma robyn@sys-con.com

Advertising Sales Manager:

 Megan Mussa megan@sys-con.com

Associate Sales Managers:

Kerry Mealia kerry@sys-con.com

Lauren Orsi lauren@sys-con.com

Editorial

Executive Editor:

 Nancy Valentine nancy@sys-con.com

Production

Lead Designer:

 Louis F. Cuffari louis@sys-con.com

Art Director:

 Alex Botero alex@sys-con.com

Associate Art Directors:

 Abraham Addo abraham@sys-con.com

 Tami Lima tami@sys-con.com

Web Services

Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:

 Stephen Kilmurray stephen@sys-con.com

Accounting

Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:

 Betty White betty@sys-con.com

Accounts Receivable:

 Gail Naples gailn@sys-con.com

 Customer Relations

Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com

JDJ Store Manager:

 Brunilda Staropoli bruni@sys-con.com

by Emmy Huang

I

Emmy Huang is

senior product

manager for

Flash Player.

Her experience

includes work-

ing in engineer-

ing and product

management

on a range

of digital

entertainment

technologies at

Sony Pictures

Digital, Liberate

Technologies,

and Intel. Emmy

earned her

MBA from the

UCLA Anderson

School of

Management

and has a BS

in Computer

Science from

the University

of Illinois.

JDJ.SYS-CON.com6 September 2006

 inding and buying Java books
online is great…as long as you
know what to look for. The
thing is in many cases it’s not
obvious from the book title

what the book about (I’ll give you
some examples below). So visiting a
real bookstore can be a much better
experience. I’m lucky to work right
by a large bookstore, so I have the
luxury of visiting this store a couple
of times a week. This is how it goes.
You slowly move your eyes along the
bookshelf…Stop, let me open this one.
No hurry. I believe in the chemistry
between books and readers: either
you like it or not. This very moment.
Without even reading it. No rush. Do
you know that books are not put on
the shelves randomly? Books on hot
topics and books by well-established
publishers like O’Reilly are always put
on the shelves at eye level. When some
languages or tools are hot, books start
their “career” movement up the store
ladder, or rather up the shelf. Three-
four years ago, Java books dominated,
and then .NET started fighting for
space. All of a sudden books on Ruby
and AJAX popped up at the level of my
belly. Two weeks ago, all Flash 8 books
suddenly moved from the floor level to
the top shelf…
 But let’s get back to Java. I’d like to
tell you about four recently published
Java books. I’ll start with excellent
books whose titles don’t exactly reflect
their contents.
 Beginning POJOS from APRESS.
This book is actually about server-side
development with Java. It starts by de-
fining the application to be built, and
over the course of the book the author
presents the tools and frameworks
required for the sample application.
After defining the task, he walks you
through the architecture of this appli-
cation, domain model, and use cases.

The next stop is development and
build tools (Eclipse and Ant). Simple
examples and best practice advice
make the learning process enjoy-
able. Data persistence with Hibernate
comes next. Only now do POJOs come
on stage, and their mapping to the da-
tabase tables are well explained. EJB3,
the Spring framework, testing, every-
thing is here. Finally, there’s a good
discussion about the role of continu-
ous integration in a project’s lifecycle.
This is a great book for junior and
intermediate Java programmers who
care about programming in style and
are looking for a good tutorial on Java
application development with popular
Open Source tools. I own many qual-
ity books from APRESS, which has
become one of the best publishers of
the computer books.
 Agile Java Development with
Spring, Hibernate, and Eclipse from
Sams. This is yet another great book
… if you don’t pay too much attention
to the title. This book is not a Spring
or Hibernate tutorial. It presents an
excellent overview of the development
process in an enterprise Java shop. The
author is an experienced practitioner
and this book is a jewel for any Java
architect or development manager.
You’ll learn how to set up the environ-
ment, gather business requirements,
and build the project deliverables an
agile way. The author explains where
Spring, Hibernate, build and test tools
fit by going through the process of
developing a sample Java application.
Here and there he sprinkles concise
Java or XML code samples that are
short enough to not get you carried
away with details, but at the same time
they help you put all pieces of a Java
Enterprise Application puzzle in the
right places.
 Your best bet is to buy these two
books together. What a duo!

 Swing Hacks from O’Reilly. O’Reilly
occupies the premium bookshelf
space for a good reason. It’s the best
publisher of software books. If you’re
a Swing developer, stop reading
this article and immediately order
this book. Amazon sells it for under
$19 and at that price it’s a steal. It
contains 100 hacks, working code
samples on various subjects of GUI
programming with Swing. You’ll find
examples of working with tables and
trees, file choosers, frames, animated
windows, drag-and-drop, various
tricks with text and fonts, and work
with audio. This book isn’t a tutorial,
just keep it on your desk and use it as
needed.
 Java Concurrency in Practice from
Addison-Wesley. Let me just give you
the names of some apprentices that
the author of this book has invited:
Joshua Bloch and Doug Lea. Should I
even continue? Brian Goetz is the lead
author. I bought this book online just
because of the names. When it arrived,
I was just amazed. The amount of the
information per square inch of paper
is extremely high. Talk about advanced
stuff! Java is a great programming
language, if you know how to use it.
People who want to squeeze the best
possible performance out of a JVM
should buy and study this book. All
new features of the java.util.concur-
rent package introduced in Java 5 are
presented with reasonably simple
examples. If you spent some time
swimming in the Java Ocean, this
manuscript will take you to the next
level.
 In my opinion, these books stand
out from the crowd. You also have
a chance to state your preferences
by including your favorite books in
JDJ’s annual readers choice awards
at http://java.sys-con.com/general/
2006rc.htm.

EntErpriSE ViEwpoint

by Yakov Fain

Java Bookshelf

F

Yakov Fain is a senior IT archi-

tect consulting Wall Street

companies. He’s authored

several Java books, dozens of

technical articles and his blog

is hugely popular. SYS-CON

Books will be releasing his

latest book, “Rich Internet

Applications with Adobe

Flex and Java: Secrets of

the Masters” this Fall. Sun

Microsystems has nominated

and awarded Yakov with the

title Java Champion. He leads

the Princeton Java Users

Group. Yakov teaches Java and

Flex 2 at New York University.

yfain@sys-con.com

JDJ.SYS-CON.com8 September 2006

The Object Database
With Jalapeno.

Give Your POJOs
More Mojo.

The object database that runs SQL faster than relational databases now comes with InterSystems
Jalapeño™ technology that eliminates mapping. Download a free, fully functional, non-expiring copy at:

www.InterSystems.com/Jalapeno1P

˜

© 2006 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 8-06 Jal1JDJ

Jal1 JDJ.qxp 8/22/06 4:16 PM Page 1

pen Source means different
things to different people.
For some it’s a business
model. For others it’s a way

of collaborating. Some see it as a way
of reducing costs. And some are out to
change the world.
 That may sound a touch dramatic,
but it’s a pretty accurate description
of the landscape. So let’s look at each
of these and see if we can’t point out
something interesting and perhaps
unexpected about how Java and Open
Source are interacting.

Open Source as Collaboration
 Although people gripe that Sun’s
Java implementation isn’t Open Source
(not yet, anyway), huge amounts of
work have been done on software that
supports the construction of sophisti-
cated applications and platforms that
is Open Source, especially under the
auspices of the Apache Foundation.
Having started as a simple Java servlet
runner called Tomcat, the Jakarta proj-
ect has blossomed into a diverse group
of frameworks for common tasks, Web
development, and enterprise applica-
tions.
 Apache isn’t the only one. One of the
amazing things that even most Linux
and Open Source advocates don’t
realize is just how much Open Source
activity there is around Java. A huge
percentage of the active projects listed
at FreshMeat or hosted on Source-
Forge are written to run in Java Virtual
Machines. You see the same level
of collaboration in other dedicated
communities including Codehaus and
ObjectWeb, and, of course, the freight
train known as the Eclipse Foundation.
 When most people think about the
products coming out of the Eclipse
community, they think about the
Eclipse Integrated Development
Environment used to write and debug
Java code. That’s not wrong per se, but
it overlooks the fact that Eclipse was
designed as a platform to build appli-
cations on. Several major vendors have

recently decided to base their products
on top of the Eclipse Rich Client
Platform. The next version of Lotus
Notes will be built on this technology.
Of course this will be transparent to
corporate users, but great news for
developers: as ever with Open Source,
the work that Notes engineers put into
improving the Eclipse platform for
their own needs will benefit everyone
who uses Eclipse technologies.
 All of these are examples of the es-
sence of the Open Source movement:
collaboration. But why do people do
it?

Open Source Reduces Costs
 One of the common arguments
advanced when explaining why
organizations contribute to Open
Source is to reduce development costs.
Part of what any company does adds
value – be this in terms of proprietary
processes, specialized knowledge,
or other unique abilities that give
them a competitive advantage. At
the same time, much of what has to
be done to reach a point where they
can provide that value is ground they
share with others in the industry,
and that is where collaboration, even
with competitors, makes sense. We
frequently see this in infrastructure
– do you really need to create your
own Java logging framework? No, of
course not. There are already several
excellent ones available (even over
and above the Open Source-originated
log4j that Java itself absorbed). On the
other hand, if you’ve gone through the
trouble of creating a library to do some
complex yet common tasks that others
have likely grunt through as well, does
it make sense to maintain that library
yourself, or to work with others so you
can take advantage of improvements
and fixes that they might make, quite
frequently enabling new functionality
you wouldn’t have been able to afford?
Really, each of these examples is noth-
ing more than a joint venture, which is
certainly a common enough structure

in the business world. The next time
you’re arguing in favor of using an
Open Source solution, you might bring
this up.
 And it’s not just development cost.
Not to be sneezed at is the funda-
mental premise that access to the
code makes maintenance easier – and
in many cases is the only thing that
makes it possible. Being able to see
what’s going on in an application or
platform is often absolutely necessary
to diagnose and troubleshoot prob-
lems. This is applicable up and down
the IT stack, but is particularly relevant
for Java developers trying to squeeze
every last drop of performance out of a
heavily loaded platform. If you’re run-
ning an enterprise application server,
the combination of JBoss and Hiber-
nate on top of one of the Open Source
databases is hard to beat. Being able to
deploy on commodity hardware and
leverage non-traditional architectures
has led to a price/performance ratio
that’s hard to beat.
 Just as important are infrastructure
projects. It’s easy to forget that tools
that are fundamental to our daily work
like JUnit and Ant are Open Source
– and this is a case where the price
is right indeed. Further up the stack
are more comprehensive tools for a
range of tasks – projects like Maven (a
comprehensive build and deployment
tool), continuous integration systems
like CruiseControl and BeetleJuice,
which help automate the task of build-
ing and testing large software projects,
and systems that bring knowledge
together like Cargo.
 That last one bears more detailed
mention. One of my clients has me
working on revamping the infrastruc-
ture they use to build their products
and run functional tests across them.
They’re a Java shop, and so it’s no
surprise that their product, a rather
large Web application, is built on Java
servlets and JSP; and since they target
a wide range of enterprise customers
they need to test their app on as many

opEn SourcE

by Andrew Cowie

Barbarians at the Gate

O
A report from the frontier where Open Source and Java meet

Andrew Cowie is a long-time

Unix and Linux user and advo-

cate, but somewhat unusually

was an infantry officer in the

Canadian army, having gradu-

ated from the Royal Military

College with a degree in

engineering physics. He saw

service across North America

and did a peacekeeping tour

in Bosnia. Based in Sydney,

Andrew runs Operational

Dynamics, a consultancy

helping clients worldwide

with crisis management. On

the technical side, Andrew

has extensive experience as

a Unix/Linux sys admin, Java

developer, and has long been

an Open Source advocate.

andrew@

operationaldynamics.com

JDJ.SYS-CON.com10 September 2006

application server containers as pos-
sible.
 Not terribly unusual, but when
you’re trying to run automated tests,
it gets tricky. Although in theory one
should be able to interchangeably use
different app servers, we all know that
the different vendors (Open Source
and commercial) who have imple-
mented the servlet, JSP, and J2EE specs
have all done it differently. Even as-
suming the application you’re testing
doesn’t use vendor-specific extensions,
you still have to deal with the problem
of setting up, starting, and stopping
the app server containers themselves.
And as you’d expect, each app server
has a significantly different way of be-
ing configured and run.
 That’s where Cargo, a project hosted
by Codehaus, comes in. Working to-
gether, groups from different environ-
ments have concentrated knowledge
of how to configure, start, and stop
a wide range of different containers
into a simple API that you can use
from within a Java program or add to
your Ant or Maven scripts. And this
dramatically accelerates your testing.
 Infrastructure, tools, automation,
and testing. All of these taken together
have reduced barriers to cross-plat-
form development enabling Windows,
Unix, and Linux and Mac developers
to work together, helping broaden
audience and use while reducing cost
and complexity.

Open Source as Business Model
 While some companies have lever-
aged Open Source as a way to reduce
the cost of doing business, others have
chosen Open Source as the basis of
their business.
 Object relational mappers are a
necessary evil if you’re forced to deal
with a legacy SQL database system,
but many developers, especially those
working on small mobile or discon-
nected systems, have neither the
resources nor the inclination to deal
with such enormous complexity and
in any case can’t afford the footprint of
such a combination on their devices.
Enter db4o.
 Its Java native embedded persis-
tence solution db4o is remarkably easy
to use. Developers can be up and run-
ning in less than 10 minutes. And that’s
not 10 minutes of figuring out how to
install the thing. That’s a few brief lines
of code and you’ve got a complete
database that stores your data in the

object-oriented form in which you
work with it.

	ObjectContainer	db;

	db	=	Db4o.openFile(“warehouse.db”);

		 //	your	code	here.	Perhaps...

	Inventory	a	=	new	FastMovingItem();

	q.setQuantity(400);

	

	db.set(q);

	db.commit();

And persisted! Queries are just as easy,

	Inventory	proto	=	new	Invetory();

	proto.setName(“fruit”);

	

	List	results	=	db.query(proto);

 One of the great things about db4o
is that it’s native Java. You just feed it
Java objects and get Java objects back
out again – no need to translate your
data model to some third-party pseu-
do-representation or any requirement
to write endless metadata in XML. It
does a really straightforward job of just
getting on with persisting Plain Old
Java Objects. No mucking around with
bytecode enhancers (like JDO) and
certainly none of the self-mutilation
that goes with EJB.
 db4o has proven really easy to use.
You do have to wrap your head around
the notion that you don’t have to worry
about foreign keys anymore – when
you want a reference to another bit of
data you just use a plain old Java vari-
able because variables and instance
fields are references in Java. Neat. The
most remarkable part, though, has
been the degree to which it enables
object-oriented data models. For so
long we’ve been forced to hamstring
our domain object design in ways
that are largely flat so we can shoe-
horn them into the legacy rows and
columns of relational databases. With
db4o, you can develop elaborate data
models with complex object graphs
and deep inheritance hierarchies and
then persist that information without
any fuss. Quite the productivity boost.
 There have been some remarkable
success stories with db4o. Intel is us-
ing it in its chip fabrication plants; it’s
embedded in the robots Bosch makes
for food preparation and consumer
goods packaging; Boeing is using it for
a new multi-mission aircraft and BMW
has built it into its latest cars. Custom-
ers can’t say enough about the short
start-up times, zero administration,

and low memory footprint as they
enthuse about why they chose it for
their products. Not bad for a database
that comes in a 400KB jar file.
 db4objects has recently released a
replication tool called dRS that lets you
exchange data not just with other db4o
instances but with relational database
systems as well. This makes it easy to
design systems where a large enter-
prise data store contains information
that workers need to access from dis-
connected devices. This is a common
problem – a salesperson on the road
needs customer data; someone work-
ing in a warehouse needs to collect
and propagate inventory information;
medical devices need to gather and
process vast amounts of data from a
patient. In all these cases, mobile de-
vices have limited resources and have
to exchange information with larger
systems. db4o excels at this.
 Christof Wittig, CEO of db4objects,
explains his company’s decision to
release its software this way: “We live
in a post-materialist world. People
don’t have long lead times to do ev-
erything themselves. It’s only through
collaboration that we can empower
each other to succeed.” Asked why
they support Open Source, “That’s
easy,” he said. “We owe everything to
the community. From the outset, the
user and developer community have
helped shape and refine the product
design and direction. We wouldn’t have
had that if we weren’t Open Source.
Even more important, our product
is already easy to use; Open Source
means that db4o is easy try and that in
turn wins us customers.”
 db4objects, Inc. releases db4o under
a dual-license model. Manufacturers
can choose a commercial license if
doing proprietary embedded work for
a surprisingly modest price per unit.
And if you want to evaluate its use,
are doing in-house work, or want to
use db4o in your own Open Source
projects then you can use db4o freely
under the GPL.
 Obviously we’ve been talking Java
here, but developers who have to
do cross-platform development in
heterogeneous environments will be
interested to know that there’s a .NET
version of db4o available as well. The
two are entirely binary-compatible; a
number of its customers are running
db4o as the storage back-end on Java
application servers while writing
their clients in little .NET programs.

11September 2006JDJ.SYS-CON.com

opEn SourcE

Yet-another example of Open Source
bringing communities together.

Open Source to Change the World
 For most people, Open Source
means cost free. But a growing number
of people have come to believe in the
freedom that the Free Software move-
ment preaches. Freedom to innovate.
Freedom to modify and to help others
with your work. It’s the way the infor-
mation age began.
 Over the last few years an increas-
ing amount of effort has been invested
in what I’ll call Free Java. As ever, the
word free is a tad inadequate; the Open
Source movement encourages you to
realize that their essential message is
freedom as in liberty (to modify a pro-
gram, to enhance or reuse it as you see
fit to redistribute) in addition to the
notably useful property of being free as
in price (though many of us gladly pay
our distributor or vendor to package it
all up and provide us support).
 Sun’s Java VM is, of course, not free
or Open Source and until recently
its license forbid redistributing Java
binaries. So, not unexpectedly, the free
software community has been creating
an implementation of Java that does
give you those freedoms.
 The GNU Classpath project is work-
ing towards providing a fully compat-
ible set of class libraries and supports a
dizzying array of Java Virtual Machines
– from research VMs like Kaffe and
SableVM to the quaint little JamVM to
the rocketing CACAO and JikesRVM
and the truly radical GCJ project.
 GCJ deserves special mention. Five
or six years ago, hackers at Cygnus (now
part of Red Hat) realized that one way
they could look at Java would be to
consider it a specifically defined subset
of C++ (in the same sense that XML is
a specifically defined subset of SGML).
They reasoned that if they wrote a first-
stage compiler that would take Java
in the front-end and spit out the tree
representation used by the gcc compiler
internally, they could take advantage
of the tremendous power of the whole
GCC suite behind it to optimize that
code and link it to binary executables
that would run on any of the many
platforms that GCC already supports.

 And, ta-da, one of the consequences
of the Free Java effort is that you can
run Java programs on virtually every
architecture out there. You are no lon-
ger limited to the few platforms that
the major vendors create their run-
times for – a significant factor for em-
bedded developers. Concurrent efforts
to create a tight but highly performing
garbage collector have meant that you
can now create efficient and optimized
programs with small footprints that
– gasp! – are written in Java.
 Ahead-of-time compilation (AOT)
is somewhat unusual for us to think
about – we’re quite used to the just-
in-time compilation (JIT) that has
been part of commercial VMs since
Java 1.1 days. JITs have a particular
challenge though – they have to turn
the intermediate representation (Java
bytecode from a .class file) into native
machine code fast enough that the
user doesn’t notice. That’s a tall order,
yet it’s amazing how well modern
VMs do it. There is, nevertheless, a
limit to how much optimization a JIT
compiler can achieve because of the
limited time it has available. There’s
also a question of how much comput-
ing power is taken to do JIT compila-
tion – horsepower that may not be
available, especially on resource-lim-
ited machines like small embedded
devices. By doing the compilation of
native machine code ahead of time,
GCJ isn’t constrained by having to
provide near-instantaneous compila-
tion and has the luxury of being able
to try more in-depth optimizations.
The result is fast code and even bet-
ter, there’s no start-up penalty when
a Java program is launched. Instead
of the overhead of instantiating a
massive VM and struggling through
the JIT compilation of an enormous
number of core classes, the code is
already native and can immediately
start executing – brilliant for small
processes and desktop applications.
 Red Hat, in particular, has invested
significant effort into improving GCJ
and the Classpath libraries to achieve
this outcome on both small systems
and enterprise servers. This has had
impressive results: major projects like
Eclipse and JOnAS can be built native

resulting in a considerable perfor-
mance boost. And if you’re running the
Fedora Core Linux distribution then
any time you install a Java library it will
be compiled native and transparently
used to speed up your programs.
 And there’s even more to report
from Free Java land. Recently a new
project being incubated by the Apache
Foundation has emerged on the scene.
The effort, called Harmony, also aims
to develop a fully compatible Open
Source class library and VM imple-
mentation. It doesn’t have much of a
community behind it yet but it’s been
getting impressive donations of code
from several major players in the Java
space.
 So across-the-board activity is up.
Amazingly, some lament the bevy of
choices maturing in the Java world,
complaining that they have to invest
effort into figuring out which solu-
tion is best for them. Ignoring for
the moment that it has always taken
hard work to figure out what course
is best to take on an IT project, Java
developers should be glad of all the
competition. As all these projects jostle
together, collaborating where they
have common interests and competing
where they think they can do bet-
ter than the others, better platforms
emerge, and that benefits all of us who
write Java programs.

Conclusion
 All is not quiet on the Open Source
front. From simple collaboration to
unexpected innovation on platforms
tiny or huge, Java stakes out a vibrant
place in the Open Source pantheon.
 Of course, we can’t end a discussion
about Open Source and Java without
briefly touching on the strong signals
coming out of Sun Microsystems that it
will in the not-too-distant future open
its Java implementation. It remains
to be seen whether Sun will choose a
license that will actually qualify under
the Open Source Definition, but early
indications are that it’s listened to
people from the FOSS community and
know it has to go all the way.
 And then watch in amazement
at the hordes who’ll be using Open
Source. Keep watch at the gates!

JDJ.SYS-CON.com12 September 2006

Job No.:
Client:

File Name:
Title:
Date:
Pubs:

see included report file
Fonts:

PRODUCTION NOTES

“Misunderstood” Developer
Sunny Chong

6BO236M_A

PUB NOTE:

7" x 9.4375"
7.75" x 10.5"
8.5" x 11.25"
4/C

Please examine these publication materials carefully. Any questions regarding the materials, please contact Erik Welch at (415) 217-2809

BY DATE

Business Objects

Dr. Dobbs, 10/1/06
JDJ, 9/1/06
VSM, 9/1/06

Live:
Trim:

Bleed:
Color:

Production:

READER

13
LASER%

6BO236M_A_Misunderstood.indd

8/7/06 12:00 PM

APPROVALS
Traffic

Production
Proofing

Account Mgr.
Art Director
Creative Dir.

A12136_1c.indd
08/07/06 16:30
133 linescreen HW

A12136c2B.tif

top MISCONCEPTIONS that drive
Meet the most misunderstood developer team in the world.

our Crystal Reports dev team crazy

Crystal Reports® is too expensive. Actually, the developer edition is just $5951 USD (or
upgrade for only $3151). Complimentary Crystal Assist support2 provided with purchase.

Crystal Reports doesn’t include a free runtime license. Not true, the developer edition
includes a free runtime license3 for each component engine.

Getting reports on the web is complex. False, the developer edition includes crystalreports.com4

and Crystal Reports Server5 to speed and simplify web reporting deployments.

Crystal Reports only works in Windows®. Not quite, whether you need to create or
deploy reports on Windows, Linux or Unix, we have a Crystal Reports technology for you.

Find out more at: www.businessobjects.com/devxi/misunderstood

1 Suggested retail price. 2 Complimentary access to support engineers and self-help. 3 Includes an unlimited runtime license for internal use of .NET, Java, and COM engines. 4 Includes ten named
user licenses. 5 Includes fi ve named user licenses. The Business Objects logo and Crystal Reports are trademarks or registered trademarks of Business Objects in the United States and/or other
countries. All other names or products referenced herein may be the trademarks of their respective owners. © 2006 Business Objects. All rights reserved.

n June 26, 2006 the Eclipse
Foundation announced the
availability of new releases
of 10 Open Source projects.
This simultaneous release

event, named Callisto, garnered a
lot of attention for the 10 projects
involved. But, meanwhile, on the same
day and without much fanfare, not
even a press release, the Dali JPA Tools
project shipped its first formal release
numbered 0.5. With the release of Dali
0.5, developers now have a solid set of
tools for developing applications for
the new Java Persistence API (JPA) in
Eclipse.

The Java Persistence API
 The Java Persistence API is part of
the new Java EE 5 EJB 3.0 specification
and defines a vendor-neutral stan-
dard for object-relational mapping.
But don’t be fooled by the term “EJB.”
The JPA specification was certainly
developed under the umbrella EJB 3.0
specification, but that doesn’t mean
it’s just for Java EE. JPA is designed to
work in Java SE as well as EE, and will
likely be split off into its own specifica-
tion in the future.
 JPA defines a way to map plain old
Java objects (POJOs), not Entity Beans,
to relational databases. This means
you can use JPA to store the Java
objects you write without having to
subclass a JPA-provided class or imple-
ment any JPA interfaces. One of the
driving goals of the JPA specification
was ease of use and it shows.

JPA in Eclipse
 One of the most striking features
of JPA is the use of Java 5 annotations
to define object-relational mappings.
By adding annotations to your classes
you can make instances persistent. JPA
uses the term “Entity” for persistent
objects and uses the @Entity annota-
tion to identify them. This means that

you can use a simple text editor or the
Eclipse Java editor to work with JPA.
 Unfortunately the Java editor
doesn’t understand what the annota-
tions mean. As far as it’s concerned
annotations are just metadata markup.
It can validate the syntax but not the
semantics. For example, in Figure 2
the Phone Entity’s number field is
mapped to a column named “NUM.”
That column may or may not exist in
the database but without JPA-aware
validation you won’t find out until
runtime — a very bad time to find out.
This is essentially what Dali provides:
JPA-aware tooling and validation to
ensure that what developers build at
design time will run at deployment
time.

Dali Overview
 Dali provides tools to develop JPA
applications targeted at either Java SE
or Java EE and supports top-down,
bottom-up, and meet-in-the-middle
development approaches. Regard-
less of whether you want to persist an
existing Java object model, manipulate
data in an existing database, or con-
nect your existing Java classes with an
existing database, Dali can improve
your productivity and help ensure that
you don’t spend your time in an end-
less edit, deploy, run, debug cycle.
 For example, Figure 3 shows the
same Phone Entity as Figure 2. But
when using Dali, a problem is found in
the JPA mapping for the number field.
Dali has validated the column name
specified in the @Column annotation
against the Phone table and found that
there’s no such column.

JPA Defaults
 One of the most useful features
of the JPA is its defaulting rules. For
example, if an Entity is not explicitly
mapped to a table then the table name
defaults to that of the Entity. Default-

ing rules let developers “program by
exception.” That is, they only need to
add annotations for things that don’t
match the defaults. In the case of our
Phone example, Dali has confirmed
that a table exists in the database with
the name “Phone” — the same name
as the Entity. Since there’s no problem,
no errors are displayed.

Dali Views
 Dali contributes two views to the
Eclipse user interface along with a
perspective that defines a layout suit-
able for performing object-relational
mapping. Those two views are the
Persistence Outline and Persistence
Properties.

Persistence Outline
 The Persistence Outline view is
similar to the Eclipse Java Outline but
offers a JPA view of your object. In
Figure 4 the Persistence Outline shows
the Phone Entity and its mapped
attributes. In JPA you can either put
your mapping annotations on a
Class’s fields or properties (JavaBean
style getters). The Persistence Outline
displays the mappings the same
way regardless of which of the two
approaches you choose. Using the
outline you can get a quick thumbnail
sketch of the mappings for an Entity,
even if those mappings are spread
throughout the Java source file. For
Phone you can see the id holds the
primary key of the Entity and is a Basic
mapping — mapped directly to the
database column. The number attri-
bute is also a Basic mapping while the
custs attribute is a collection of objects
mapped as a ManyToMany.
 By default, the Persistence Outline
selection is linked with the Java editor
so you can navigate quickly around
a Class to individual mappings. The
linking is reciprocal — selection of
attributes in the Java editor will also

opEn SourcE

by Shaun Smith

Hello Dali!

O

An introduction to the Eclipse Dali Java Persistence API tools project

Shaun Smith is co-lead of the

Dali JPA Tools project and a

principal product manager at

Oracle for TopLink, the basis

for the open source TopLink

Essentials JPA reference

implementation.

JDJ.SYS-CON.com14 September 2006

update the selection in the Persistence
Outline. This quick navigation to
mappings is useful if you want to jump
to them in the Java source editor, but
is more useful when paired with the
Persistence Properties view.

Persistence Properties
 The Persistence Outline gives you a
brief summary of your mappings and
lets you navigate between them, but
doesn’t offer any help in editing your
mappings. That’s the function of the
second view contributed by Dali: the
Persistence Properties view. In Figure
3, we saw how Dali validated map-
pings and put error markers in the Java
editor and errors into the problems
view. But as the saying goes, acknowl-
edging you have a problem is just the
first step. The Persistence Properties
provides tools for understanding and
resolving mapping problems.
 The Persistence Properties view
performs a couple of very useful
functions. It shows how a mapping is
configured and, perhaps even more
importantly, it shows the defaults that
will be applied by a JPA runtime when
the Entity is deployed.
 For example, in Figure 5 the
column mapping for the number
attribute is defaulting to True for
insertable and True for updatable.
Defaulted values are clearly visible
through the use of the word “Default.”
Notice that the column name isn’t
marked as a default value because the
developer has explicitly specified it in
an annotation.
 But let’s return to the problem Dali
identified with the number attribute
— there’s no such column as NUM in
the Phone table. A valid column name
has to be selected, and the Persistence
Properties view can help. It offers
valid options for all mapping settings
including settings that require access
to the data model.
 In Figure 6 the column name
dropdown contains all the Phone table
columns. It also displays what the de-
fault column name would be if noth-
ing were specified. Since the default
is correct, the default may as well be
used. With the entire mapping using
default values Dali removes the map-
ping annotation from the Java source
to keep it uncluttered by unnecessary
annotations.
 Figure 7 and Figure 8 show that
with no column specified, in fact no
mapping specified at all, the defaults

 Figure 1 When using Java 5, the Eclipse Java editor is aware of annotations and will perform code completion on

annotation and property names

 Figure 2 The @Column overrides the default mapping of the ‘number’ field to the

‘NUMBER’ column

 Figure 3 Dali validates JPA mappings against the data model. In this case there’s no

column named NUM on the Phone table

 Figure 4 The Dali Persistence Outline View

 Figure 5 The Persistence Properties View displays

the settings for mappings explicitly defined by the

developer and the defaults that are implicitly applied

by JPA runtimes

 Figure 6 The Persistence Properties View provides access

to the data model for mapping

 Figure 7 The Persistence Properties View showing the default Basic map-

ping of the number attribute and the default column name

15September 2006JDJ.SYS-CON.com

opEn SourcE

validate against the data model and
there are no problems.

Top Down and Bottom Up
 We’ve seen how Dali can help with
the “meet-in-the-middle” approach
of mapping an object model to an
existing database but two other ap-
proaches are supported. Using Dali,
it’s possible to start with a set of Java
classes annotated as Entities and
generate the database tables they
map to. Generation of Entities from
tables is also supported. The al-

gorithm Dali uses for both Entity
and table generation is defined by
the JPA default mapping rules with
a few extra heuristics to deal with
differences in Java/database naming
styles like underscores versus camel
case.
 Dali’s support for generation of-
fers a quick way to bootstrap a new
JPA application. You can generate
Entities or tables to get a starter
configuration and then refactor
either knowing that Dali will flag
any breakage in your mappings with
problem markers.

Deployment
 Deploying a JPA application is
straightforward whether you’re
using Java SE or EE. Dali doesn’t
offer any specific packaging and
deployment support beyond some
assistance with maintaining the
persistence.xml file (more on this
below), however, deploying JPA
Entities is just like deploying POJO
applications. You can jar them up
using the standard Eclipse support
for exporting jars or include them
in an Enterprise Archive (EAR) as a
utility jar using the Web Tools Plat-
form (WTP).

Persistence.xml
 The one XML configuration file
required in the JPA specification
is the persistence.xml file. This file
defines important runtime settings
including database connection
information and transaction type.
When you add persistence support
to a Java project, Dali creates a basic
persistence.xml file and places in
the src\META-INF folder. Typically
you’ll hand-edit this XML file to
reflect your deployment configura-
tion.
 As mentioned, JPA applications
can be deployed to both Java SE and
EE environments. However, when
running outside an EJB 3.0 contain-
er, JPA requires an additional piece
of information in the persistence.
xml: a list of all the persistent Enti-
ties. In the 0.5 release Dali provides
support for keeping the persistence.
xml in sync with your defined Enti-
ties.

 Right-clicking on the per-
sistence.xml file in the Pack-
age Explorer and selecting Java
Persistence>Synchronize Classes will
update its list of classes (Figure 11).

Future Directions
 The focus of the Dali 0.5 release
was annotation-based mapping and
support for the core JPA mapping
types. Dali 1.0 will offer editing and
validation support for both annota-
tion and XML-based mapping as
well as the use of XML mappings to
override annotations as defined in
the JPA specification.
 Smoother integration of the Dali
tools with WTP is also a high prior-
ity for 1.0. The Dali project is now
incubating inside WTP as one of the
new Java EE 5 technologies that will
be incorporated into WTP 2.0.
 In 1.0, Dali will also leverage
the enhanced database support
provided by the Data Tools Project
(DTP). The combination of WTP
with Dali and the DTP will provide a
comprehensive toolset for the devel-
opment of Java applications that rely
on relational data.

Getting Started
 The best place to begin with Dali
is to visit the project home page,
check out the online demos, down-
load the plug-ins, and go through
the tutorial. The Dali newsgroup is
monitored by the development team
and is a great place to ask a question
or get help.
 And finally, like every Open
Source Eclipse project, contributors
are welcome. Contributors meet on
the dali-dev@eclipse.org mailing list
to discuss technical issues and make
decisions.

Resources
• Dali home page with links to

downloads, documentation,
project roadmap, and tutorials:
http://www.eclipse.org/dali

• TopLink Essentials JPA Reference
Implementation: http://otn.
oracle.com/jpa

• JSR 220: Enterprise JavaBeans 3.0
specification: http://www.jcp.org/
en/jsr/detail?id=220

 Figure 8 With no mapping annotation on the number attribute Dali vali-

dates the defaults as problem-free

 Figure 9 Basic persistence.xml created by Dali

 Figure 10 The list of Entities can be updated in the persistence.xml using the ‘Synchronize

Classes’ menu option

JDJ.SYS-CON.com16 September 2006

ne of the 2006 Soccer World
Cup highlights must surely
be the Trinidad and Tobago
versus Sweden game. The un-
derdogs Trinidad and Tobago

managed to push off the onslaught
from the Swedish team. The game
ended 0-0, which was for the people of
Trinidad and Tobago a divine experi-
ence - their teams very first World Cup
point!
 So, you are, of course, asking your-
self: What are these guys talking about?
The question you should ask yourself
is: Is Trinidad and Tobago going to be
a success in the Java EE world as well?
With the addition of project Trinidad
to the Apache MyFaces community,
the MyFaces project can now offer a
rich and powerful component solution
Trinidad and Tobago (and not to forget
the original Tomahawk library). Project
Tobago is a donation from Atanion
GmbH (http://www.atanion.com) and,
as a project, it recently graduated from
the Apache Incubator.
 Project Trinidad, the largest compo-
nent library of the three, is a donation
from Oracle. This donation is a subset
of Oracle’s well-known ADF Faces
component library to the Apache Soft-
ware Foundation (http://incubator.
apache.org/adffaces/).
 What is Apache Trinidad? Apache
Trinidad is the most comprehensive
free JSF component library on the
planet. This library contains 12 helper
objects such as converters and valida-
tors, and a staggering 93 components
ranging from simple input compo-
nents to complete page components
with built-in menu model support. In
addition, Apache Trinidad provides a
set of extended services such as dialog
framework and skinning framework.
 This is the second article in a series
of articles where we will be deep div-
ing into various aspects of Oracle’s

donation - Apache Trinidad - and give
developers insight into its functional-
ity and how to use and extend Apache
Trinidad. In our first article we covered
the HTML Ajax RenderKit provided
with project Apache Trinidad (http://
jdj.sys-con.com/read/232061.htm),
and in this second article we are going
to cover the skinning feature provided
by this JSF component library.

Project Trinidad’s Skinning
Framework
 Project Trinidad lets you change the
appearance, or look and feel, of an ap-
plication without having to rewrite the
code that implements the application’s
user interface. Trinidad currently
provides two parent skins, Simple
and Minimal, which you can extend
to provide custom skins for your ap-
plications. The Minimal skin provides
some formatting and the Simple skin
contains almost no special format-
ting. By default, a custom skin inherits
the appearance of its parent look and
feel. When you wish to modify the ap-
pearance of a component, you simply
provide custom style definitions and
custom icons.

About the Trinidad Skins
 A skin in project Trinidad is a global
style sheet that only needs to be set
in one place for the entire applica-
tion. Instead of having to style each
component, or having to insert a style
sheet on each page, you can create one
skin for the entire application. Every
component will automatically use the
styles as described by the skin. Any
changes to the skin will be picked up
at runtime; no change to the code is
needed. Skins are based on the Cas-
cading Style Sheet specification, and
are using CSS 3.0 syntax.
 In addition to using a CSS file to
determine the styles, skins also use a

resource bundle to determine the text.
For example, the words “Previous”
and “Next” in the navigation bar of the
Project Trinidad’s table component are
determined using the skin’s resource
bundle. All the included skins use the
same resource bundle. In this article,
we are not going to cover the use of
resource bundles.

Creating a Custom Skin
 You create a custom skin by extend-
ing the Simple skin and overriding the
provided selectors. There are three
different levels of selectors: Global,
Button, and Component.
• Global Style selectors affect more

than one component. If the selector
name ends in the :alias pseudo-
class, then the selector is most likely
included in other component-spe-
cific selectors. Defining properties
for a selector that ends in :alias will
most likely affect the skin for more
than one component

• Component-level selectors can be
used to skin a particular project
Trinidad component. The selectors
defined below are specified by the
component they affect. Let’s say
you want to skin the tr:chooseDate
component. One of the selectors
is af|chooseDate::title. The ::title
pseudo-element indicates that this is
the title portion of the tr:chooseDate
component. If you want to skin the
title of the tr:chooseDate compo-
nent, you would set css properties
on the af|chooseDate::title selector in
your Project Trinidad skin .css file.

 Note: Apache Trinidad is still under-
going incubation, so naming conven-
tions such as af| will likely change in
future builds of Apache Trinidad.
 You may see selector names that
end in :alias in the component-level
section. These are meant to provide

cuStoMization

by Jonas Jacobi & John Fallows

Apache Trinidad – A World Cup
Skinning Experience?

O

A global style sheet that only has to be set in one
place for the entire application

Jonas Jacobi is a J2EE technology evange-

list at Oracle. A native of Sweden, he has

worked in the software industry for more

than fifteen years. Prior to joining Oracle,

Jonas worked at several major Swedish

software companies in management,

consulting, development, and project

management roles. For the past three

years, he has been responsible for the

product management of JavaServer

Faces, Oracle ADF Faces, and Oracle ADF

Faces Rich Client in the Oracle JDeveloper

team. jonas.jacobi@oracle.com

John Fallows, former lead developer

for Oracle ADF Faces Rich Client, has

been working in distributed systems

for over a decade. After five years spent

focused on designing, developing the

JavaServer Faces standard to provide AJAX

functionality, playing a leading role in the

Oracle ADF Faces team, he recently joined

a start-up. Originally from Northern

Ireland, John graduated from Cambridge

University in the United Kingdom and

has worked in the software industry for

more than ten years. Prior to joining

Oracle, he worked as a research scientist

for British Telecommunications Plc.

 john.r.fallows@gmail.com

JDJ.SYS-CON.com18 September 2006

short-cuts to skin more than one
component that shares a certain style
or icon, or to skin more than one piece
of a component. For example, the
.AFDefaultFont:alias style defines skin
properties that are shared by all tr:out-
putXX items. Therefore, if you change
the .AFDefaultFont:alias style, you will
affect all components sharing this style
selector.

• Project Trinidad does not currently
support component-level selec-
tors for buttons. For example, you
cannot customize a goButton dif-
ferently from a commandButton.
Skinning supports two very different
button implementations. By default,
standard browser buttons are used.
However, the skinning also supports
dynamic generation of image-based
buttons. In order to enable image-
based buttons, the following four
button icons must be specified:

1. .AFButtonStartIcon:alias
2. .AFButtonEndIcon:alias
3. .AFButtonTopBackgroundIcon:alias
4. .AFButtonBottomBackgroundIcon:

alias

 When these four icons are specified,
Project Trinidad combines the images
specified by these icons into a single
button image. (Note: These icons must
be specified using either context-im-
age or resource-image icons. Text-
based icons are not allowed.)

To Create a Custom Skin
 In most cases you will probably not
customize the skin of every compo-
nent available in project Trinidad’s
component library (there are after all
84 UI components). By reviewing your
application using, for example, the
Simple skin, you can determine what
components to customize.
 Note: At the moment the applica-
tion developer can only extend, and
inherit from, the Simple skin, but there
is progress in the Apache Trinidad
community to improve this, so that a
skin can inherit from any custom skin.
A skin consists of the following arti-
facts:
• A CSS file that defines the actual

look of the components
• A configuration file - trinidad-skins.

xml - that lists all skins available
for this application (not including
Minimal and Simple). This file has
to be located in your applications

WEB-INF directory
• An entry in the Trinidad/ADF Faces

configuration file - trinidad-config.
xml. This file should also be located
in the WEB-INF directory.

• Any other resources need to create
the actual look of the components
- additional CSS files, Images etc...

Modifying the Trinidad Skin CSS
We are going to use an application that
mimics the Apache MyFaces Website,
so that we can illustrate how the skin-
ning feature works and compare with
the original (see Figure 1).
 The hard part of providing a skin is
not the actual creation of the Trini-
dad artifacts; it is creating the actual
graphics and styles to be used by the

application that is tedious. In this case
we already have the above page as a
foundation for the look and feel, which
contains the styles and images needed.
In the skin CSS file you can add any
selectors that you wish to override, and
set the properties as needed. You can
set any properties as supported by the
CSS specification. You can also create
your own alias classes.
 The application we have built is a
standard JSF application using the
Apache Trinidad’s components with
the Minimal skin (see Figure 2).

Changing the Color Scheme of a Skin
 The easiest part of changing the
look of your application is to change
the base classes of a skin to use other

 Figure 1 The Apache MyFaces home page

 Figure 2 The sample application using Apache Trinidad’s JSF components with the Minimal skin

19September 2006JDJ.SYS-CON.com

cuStoMization

colors. For example, the Simple skin
looks Figure 3 without changes, and
with some very minor changes to the
following alias classes:

	.AFDarkForeground:alias	{color:#900000;}	

.AFDarkBackground:alias	{background-

color:#333333;}

 you can change the look and feel by
changing the style classes controlling
the base colors of the Simple skin (see
Figure 4).

Adding a Skin to a Apache Trinidad
Component
 The components that we are going
to provide a skin for are - tr:panel-
Header, tr:panelSideBar, tr:navigation-
Pane, and tr:inputDate. We are going to
start with the tr:inputDate component.
At the moment the tr:inputDate com-
ponent looks like this with the Minimal
Look and Feel:

 but we would like to change to look
like this:

 To able to do this we need to add
the component selector for the tr:

inputDate component. By adding the
following code to the skin CSS file
(in this case we have named the file
trinidadSkin.css), we can change the
icon of the calendar launch button.
Add the following af|selectInputDate
style class code snippet to CSS file
(note that in CSS the order of the
style classes listed in the CSS file is
important).

/**	inputDate	launch	icon	**/	

af|inputDate::launch-icon	{	

		content:url(/skins/trinidad/skin_images/

timedate_ena.png);

		width:	16px;

		height:	16px;	

}	

af|inputDate::launch-icon:rtl	{	

		content:url(/skins/trinidad/skin_images/

timedate_ena.png);	

		width:	16px;

		height:	16px;	

}

 Notice that the Apache Trinidad
skinning feature provides bi-directional
support, causing the duplication of the
style class name with an additional :
rtl suffix to provide “right to left” style
information in the second style class.
It is also important that you add width
and height to any style using images/
icons, since some browsers, such as
Internet Explorer, might have problems
displaying the actual icons. Next we are
going to look at the Apache Trinidad’s

tr:navigationPane control. This com-
ponent is slightly more complex than
the tr:inputDate component with more
controls and attributes that can be ad-
justed. The default look and feel for this
to control is shown in Figure 5, …and
we need to change it to Figure 6.
 We are going to add Listing 1 just
below the inputDate styles in our trini-
dadSkin.css file.
 By using the alias class - AFTab-
BarItem:alias - we can add a set of
styles to the skin that are generic to
all navigationPane controls. We have
also added styles that are unique to all
navigationPane link controls by using
the component-specific selector.
 We are not going to bore you with too
much repetitive code, so to finish off
the CSS bit of our new skin we are going
to look at how you can apply a slightly
different style to a nested component
compared to how it would look outside
its parent component. In this sample
we have a panelHeader component that
has the following skin setting:

/**	panelHeader	**/

/**	-----------	**/

af|panelHeader

{

			padding:	4px	4px	4px	6px;

			background-color:	#DDDDDD;

			border:	1px	solid	#999999;

			vertical-align:	middle;

}

af|panelHeader::level-one

{

			color:	#900000;

			font-weight:bold;

			font-size:	x-large;

}

af|panelHeader::level-two

{

			color:	#333333;

			background-color:	#EEEEEE;

			border:	1px	solid	#AAAAAA;

			font-weight:bold;

			font-size:	large;

}

 At runtime this will translate to H1,
H2 equivalents, which will look like
the Welcome note and the release an-
nouncement shown in Figure 7.
 This is fine as long as you don’t use
this panelHeader component anywhere

 Figure 3 The Simple skin applied to the sample application

JDJ.SYS-CON.com20 September 2006

STAND ON THE
SHOULDERS OF GIANTS

RCP Developer

RCP Developer™

SWT Designer™

RCP Developer™

 WindowTester™ RCP Packager™

cuStoMization

else, say nested within a panelSideBar
component. In that case the styles will
be too overwhelming, but there is a very
simple standard CSS solution:

af|panelSideBar	af|panelHeader

{

		font-size:	smaller;

		border-left:	0px;

		border-right:	0px;

		border-top:	0px;

		border-bottom:	1px	solid	#AAAAAA;

		background-color:	#F0F0F0;

		padding-top:	2px;

		padding-left:	9px;

		color:	#49635a;

}

In	this	code	sample	we	have	defined	that	

any	panelHeader	within	a	panelSideBar	

should	have	a	different	style.

Setup of a Custom Skin
 Let’s now have a look at how to set
up your application to use an Apache
Trinidad custom skin. First of all, we
need the CSS file, stored somewhere
at the root of our Web application. In
our sample application, it’s stored in
the /skin/trinidad directory. We should
also make sure that we have access to
all resources needed for the skin, such

as images and other CSS files. For our
application, these are stored in the
/skin/trinidad/images directory.
 Second, we need to make sure that
our Apache Trinidad application is
aware of the custom skin. This is done
by adding a configuration file to the
WEB-INF directory called trinidad-
skins.xml (the name of the file is a
leftover from the Oracle donation and
will soon be renamed to comply with
the Apache Trinidad’s naming conven-
tions). The content of our trinidad-
skins.xml file looks like Listing 2.

Register a Custom Skin
 The <id> element in the trinidad-
skins.xml can be used to reference a
skin in an EL expression. For example,
if you want to have different skins for
different locals, you can create an EL
expression that will select the correct
skin based on its ID.
 The <family> element configures an
application to use a particular family
of skins. This allows you to group skins
together for an application, based on
the render kit used.
 The <render-kit-id> determines
which render-kit to use for the skin.
You can enter one of the following:
• org.apache.myfaces.trinidad.desk-

top: the skin will automatically be
used when the application is ren-
dered on a desktop.

• org.apache.myfaces.trinidad.pda: the skin
will be used when rendered on a PDA.

 The <style-sheet-name> element
defines the path to the custom CSS file.

Configuring an Application to Use a
Custom Skin
 When you have created a skin and
are ready to use it, you need to make
your application aware of it by defining
which skin to use in the trinidad-
config.xml file. You set an element
in the trinidad-config.xml file that
determines which skin to use, and, if
necessary, under what conditions.

<?xml	version=”1.0”	encoding=”windows-

1252”?>		

<	trinidad-config	xmlns=”http://myfaces.

apache.org/trinidad”>

<skin-family>#{sessionScope.skinFamily	==	

null	?	“minimal”	:	sessionScope.skinFamily	 Figure 5 The new Trinidad skin applied to the sample application

 Figure 4 Sample application with some minor changes to the Simple skin

JDJ.SYS-CON.com22 September 2006

}</skin-family>

<debug-output>true</debug-output>

</	trinidad-config>

If	you	only	have	one	skin	for	your	appli-

cation,	you	only	need	to	replace	the	

<skin-family>	value	with	the	family	name	

for	the	skin(s)	you	wish	to	use.

<skin-family>trinidad</skin-family>

 To conditionally set the skin-family
value, you can enter an EL expression
that can be evaluated to determine
the skin to display. For example, if you
want to use the German skin if the
user’s browser is set to the German
locale, and use the English skin oth-
erwise, you could have the following
entry in the adf-faces-config.xml file.

<skin-family>#{facesContext.viewRoot.

locale.language==’de’	?	‘german’	:	‘eng-

lish’}</skin-family>

 In our sample application, we are
going to use a selectOneChoice com-
ponent to switch skins at runtime. For
this we need to define the following in
the trinidad-config.xml file with:

<skin-family>#{sessionScope.skinFamily	==	

null	?	“minimal”	:	sessionScope.skinFamily	

}</skin-family>

 The actual component that will per-
form the actual switching at runtime
looks like this:

<tr:selectOneChoice	label=”Select	Skin”

																				value=”#{sessionScope.

skinFamily}”

																				onchange=”form.sub-

mit();”>	

		<tr:selectItem	label=”Simple”	

value=”simple”/>	

		<tr:selectItem	label=”Minimal”	

value=”minimal”/>	

		<tr:selectItem	label=”Trinidad”	

value=”trinidad”/>	

		<tr:selectItem	label=”MyCompany”	

value=”mycompany”/>	

</tr:selectOneChoice>

 The onchange event handler will
perform a form POST whenever a skin
is selected in the selectOneChoice
component. Alternatively, you can add

a commandButton to the page that will
re-submit the page. Every time there is
a POST, the EL expression will be evalu-
ated, and if there is a new value, redraw
the page with the new skin. Figure 8
shows the completed page with the new
Trinidad skin applied (at runtime.)

Summary
Creating Apache Trinidad skins are
easy and using them even easier. An
application developer can set a skin

based on any criteria using EL expres-
sion and JSF backing beans (not shown
in this article). This allows application
developers to have different skins per
user, page, application, and so on,
without impacting the actual applica-
tion logic! We should also take a note
that Apache Trinidad is still in incuba-
tion as an Apache podling, thus skin-
ning artifacts, such as style selectors
discussed in this article, might change
in future builds.

Listing 1
/** menuTabs **/
/** You can create borders, and have image-free tabs, or you can use the icon keys (e.g.,
af|menuTabs::selected-start-icon)to create tabs with more elaborate borders. An example
of this is provided at the end of the sample. */

/** This isn’t needed when you use icons for the tabs */
.AFTabBarItem:alias
{
 border-style: solid;
 border-width: 1px 0px 0px 1px;
 border-left-color: #FFFFFF;
 border-top-color: #FFFFFF;
 padding: 2px 6px;
 background-color: #DDDDDD;
 line-height:100%;
}

/* Remove the text decoration from all tabBar links */
.AFTabBarLink:alias
{
 text-decoration:none;
}
/* Make the selected tab bold */
af|navigationPane::tabs-active
{
 font-weight: bold;
 font-size: 11px;
 color: #900000;
}
af|navigationPane::tabs-inactive
{
 font-weight: bold;
 font-size: 11px;
 color: #900000;
}

.MyLinkHoverColor:alias { color: #003300; }

af|navigationPane::tabs-inactive:hover
{
 -ora-rule-ref:selector(“.MyLinkHoverColor:alias”);
}

/** This is not used in the Trinidad skin, but menuTabs that use icons are define like
the following */
/* af|navigationPaneTabs::tabs-start
{
 content:url(/skins/trinidad/skin_images/menuTabsEnabledStart.png);
}
af|navigationPane::tabs-start:rtl
{
 content:url(/skins/trinidad/skin_images/menuTabsEnabledEnd.png);
}

Listing 2
<?xml version=”1.0” encoding=”ISO-8859-1”?>

<skins xmlns=”http://myfaces.apache.org/trinidad/skin “>
 <skin>
 <id>mycompany.desktop</id>
 <family>mycompany</family>
 <render-kit-id>
 org.apache.myfaces.trinidad.desktop
 </render-kit-id>
 <style-sheet-name>
 skins/mycompany/myCompanySkin.css
 </style-sheet-name>
 </skin>
 <skin>
 <id>trinidad.desktop</id>
 <family>trinidad</family>
 <render-kit-id>
 org.apache.myfaces.trinidad.desktop
 </render-kit-id>
 <style-sheet-name>
 skins/trinidad/trinidadSkin.css
 </style-sheet-name>
 </skin>
</skins>

23September 2006JDJ.SYS-CON.com

un Microsystems recently
announced its intentions of
finally publishing Java under
an Open Source license. But

what does that actually mean? We’ll
take a quick look at what it means
to be “Open Source,” how the Java
language specification compares to
other more formal language standards,
and the importance of the brand and
certification programs. We’ll then look
at what benefits Sun may get from
distributing Java as Open Source and
at some of the problems that will have
to be addressed.

Open Source Software
 The Open Source Initiative defines
Open Source software and a license
must meet 10 criteria to be considered
an “Open Source software” license.
Essentially, it’s a way of thinking about
licensing software. It boils down to
some very simple ideas about access to
source code and the ability to modify
the software and distribute those
modifications. It encompasses the
concept of Free Software as defined by
the Free Software Foundation around
a set of software “freedoms,” such as
the freedom to study how a program
works and adapt it to your own needs.
 Open Source software is typically
developed in a collaborative commu-
nity, either under a strong leader who
coordinates the development commu-
nity, or a meritocratic process where
a developer earns the leadership role
in the community like the process fa-
vored by the Apache community. Some
companies build businesses based on
Open Source software projects, gener-
ally ones they control. For example,
MySQL (the company) maintains
MySQL (the database engine).
In these cases, the software has a
copyright, is owned, and is therefore

licensable. Free and Open Source
software is not “public domain” in any
sense of the phrase.
 Software developed in successful
Open Source collaborative com-
munities shows all the hallmarks of
well-developed software from other
processes. Essentially good software is
developed by good software develop-
ers regardless of the licensing strategy.
So Open Source software has just as
much potential to be well-structured,
have well-defined stable interfaces,
and be delivered through a disciplined
process that encompasses software in-
spection, mandatory version control,
and automated building and testing as
software developed in other ways.
Where Open Source differs from other
well-developed software is in the
collaborative community. The best
developers interested in the software
can participate in its creation and
evolution regardless of where they live
or work. This provides a number of
benefits:
• Many people see the source code.

Software inspections regardless of
how informal prove to be much
more effective at finding bugs than
testing.

• The code is used and tested in a
broad base. This expansion of the
“test” bed tends to shake out bugs
faster and hardens the software.

• A diversity of expertise and experi-
ence can be leveraged. This applies
both to improving the code base,
as well as to innovating on the code
base to take it in new and interest-
ing directions.

 Sun has been an active participant
in the Open Source software world
since its inception. The original Su-
nOS operating system was a Berkeley
Unix derivative that came out of the

collaborative efforts around Unix in
the early days. Sun has contributed
heavily to the accessibility features in
the Gnome desktop. Most recently it
has opened the Solaris source code
base under its own OSI-approved
Open Source license (the Com-
mon Development and Distribution
License or CDDL) and has been
developing the OpenSolaris commu-
nity. So Sun definitely has experience
with Open Source, both contributing
to other and developing its own com-
munities.
 Let’s shift gears for a moment and
take a look at Java and the Java Com-
munity Process from a standards per-
spective, as that has been Java’s history
to date.

Standards (Open and Otherwise)
 A specification is simply a docu-
ment describing some interface for
interoperability. Lots of companies
publish specifications to enable cus-
tomers and partners to interoperate
software with their products better. In
such cases, where the specification is
published by a single commercial en-
tity, it typically benefits the company
by encouraging add-ons to its product.
 A standard is a specification that has
been put through some form of consen-
sus process by a collection of interested
parties. It may be a formal government-
supported de jure process with checks
and balances to ensure that the con-
sensus isn’t anticompetitive collusion.
It may be an industry or trade organiza-
tion (CBEMA, ECMA, IEEE) with a broad
interest in an area, e.g., computing
standards. It may be an industry group
with a narrower focus (e.g.. OASIS, W3C,
IETF). The consensus process has rules
that define such things as participation,
acceptance, interpretation, amendment,
and withdrawal.

opEn SourcE

by Stephen R. Walli

Open Source Software,
Standards, and Java

S

What will it mean?

JDJ.SYS-CON.com24 September 2006

 The economic purpose of a
standard is to encourage and enable
multiple implementations of the sub-
ject specified, i.e., it is the opposite of
a company specification that directly
benefits the company’s own ecosys-
tem. A standard is designed to increase
choice and benefit consumers. A
successful standard has to have mul-
tiple implementations that conform
and interoperate. If there’s only one
implementation then it’s just a vendor
specification, regardless of the process
it was put through to get a stamp of
approval.
 Sun created the Java Community
Process (JCP) to manage and maintain
the evolution of the Java language.
While it’s easy to claim that the JCP is
“controlled” by Sun, the JCP actually
has more in common with an industry
group building standards than a
vendor-controlled specification to en-
hance a vendor’s own ecosystem. The
JCP has members well beyond Sun. It
has a well-defined, consensus-based
process to manage the myriad Java-
related specifications. Membership is
open to all to participate. Its purpose
is to encourage multiple implementa-
tions of Java and not simply add-ons to
Sun’s Java world.
 The hard part of any standards
organization is how best to measure
and warrant that an implementa-
tion conforms to the specifications
to protect the value of the standard’s

brand in the marketplace. How does
one best signal to the marketplace
that a subject is what it claims to
be? Conformance measurement and
certification is an expensive process.
Sun, through the JCP, has put in
place an expensive process to certify
that Java technologies delivered by
anyone do indeed meet the specifi-
cations.
 Certifications are always taken
on by the group that stands to gain
the most (or lose the most in some
cases). Essentially the group that cares
makes the investment and develops a
program to certify things against the
standard.
 POSIX was a standards effort
defined by the IEEE that undertook to
define an operating system interface
in the C language to support ap-
plication portability. The IEEE didn’t
handle conformance measurement
however. The U.S. National Institute
of Standards and Technology devel-
oped the certification to support U.S.
government procurements. The IETF
skips expensive certification pro-
cesses after the fact, and instead uses
the reality that they define network-
ing standards to require that an RFC
has two independent interoperable
implementations to gain standards
status. The people who economically
need measurable conformance take
responsibility for putting the system in
place.

 So too is the case with Java. This is
as true for proprietary product speci-
fications and their certification pro-
grams as it is for industry and de jure
standards. The vendor stands to lose
the most with respect to its proprietary
specification’s brand in the ecosystem,
as any industry standard has to gain
from the value of demonstrating that
multiple implementations conform.

Standards and Open Source
Software
 Standards exist to enable mul-
tiple implementations of a tech-
nology. Open Source software to a
certain extent represents the one
true implementation of a technology.
When there’s one true implementa-
tion there’s no need for a standard.
For example, there’ll never be a Perl
language standard. But the interaction
is actually more subtle.
 Standards typically occur in mature
spaces where there’s a wealth of expe-
rience and expertise. When it comes
time to create a technology standard,
the vendors in the space will pick a
shared technology base from which to
create a standard. Every vendor would
love to claim its technology is the stan-
dard, and often make claims to having
the “de facto” standard, essentially
such a ubiquitous technology that it’s
a “standard in fact.” The real world
doesn’t work that way however, regard-
less of how it’s marketed. When true

“Software developed in successful
Open Source collaborative

communities shows all
the hallmarks of well-developed
software from other processes”

25September 2006JDJ.SYS-CON.com

opEn SourcE

standards are delivered, they come
from a shared technology base so that
none of the participants feels another
has a market-dominant starting posi-
tion.
 The standard will differ from that
core shared technology base, but not
so much that the shared base doesn’t
quickly morph to conform to the new
standard, and the collection of vendors
can quickly bring products to market.
In today’s world, Open Source software
projects represent that shared technol-
ogy base out of which standards can
be delivered to facilitate multiple
implementations.
 This is a somewhat odd position
then for Sun with Java. As the keeper
of a primary reference implementa-
tion, and the creator of the standards
development organization, it would
seem Sun is in an odd place. Indeed,
it’s almost as if the process is working
backwards.

Open Source Java
 So what will Open Source Java
mean? First remember that this ef-
fort hasn’t been driven by Sun, but
demanded by the community around
Java. Whether the demands are valid
or not, or indeed politically motivated
or not, there are still good things to be
had from the process.
 Sun has driven the Java standardiza-
tion process through the JCP for some
time and has a strong collaborative
community and process, supported
by a strong certification and branding
program. Delivering Java technolo-
gies as Open Source still makes sense,
however, even if the standard has led
the implementation so to speak.

 As a primary reference implemen-
tation, it will provide the following
benefits to the entire Java community,
Sun included:
• It will harden the primary imple-

mentation for Sun’s and the com-
munity’s benefit. Allowing others to
tinker and explore will uncover new
and interesting problems, which
can then be addressed.

• It will enable new innovation. Many
claim Java’s day is done. Allowing
new implementors to explore the
primary production base will invari-
ably lead to new ideas and innova-
tion on the platform.

• As new code enters the source base,
it will likely come in at a very high
level of quality. Even if Sun develop-
ers act as the primary committers
for the foreseeable future a high
level of inspection will be brought
to bear on code coming in from the
outside. For new work delivered
from the inside, the inspection by
the community will likely be equally
vigorous.

 That is not to say that there won’t be
challenges. As with any large code base
that exists in a commercial product,
all will have to be inspected carefully
from a number of angles. Obviously
Sun won’t want any immature code
released, but Sun also has to ensure
that all code licensed in from the out-
side can be released and manage that
process.
 Sun already supports a strong devel-
opment community around Open-
Solaris and hopefully that experience
can be leveraged by the “OpenJava”
team. Likewise, Sun already supports

a strong collaborative community in
the Java Community Process, so it
has a great channel to begin its Open
Source efforts when it figures out how
it intends to publish what sources. It
began the release of Java EE 5 with the
GlassFish project, and now time will
tell if it can harness all its collective
experience in Open Source software,
standards, and the JCP to bring about
a complete Open Source Java world.

References
• The Open Source Initiative and

the Open Source definition can be
found at http://www.opensource.
org/docs/definition.php.

• Free software as defined by the Free
Software Foundation can be found
at http://www.fsf.org/licensing/
essays/free-sw.html.

• Sun’s CDDL license can be found at
http://www.opensource.org/licens-
es/cddl1.php.

• The Shared Source CLI can be found
at http://msdn.microsoft.com/net/
sscli/.

• The Mono project can be found at
http://www.mono-project.com/.

Stephen Walli is vice-president of Open Source

development strategy for Optaros (www.optaros.

com), responsible for architecting and managing

Optaros’ relationships with the Open Source com-

munity. Before joining Optaros, he was an Open

Source advocate at Microsoft, where he focused

on “shared source” business strategies and was

responsible for the technical implementation of

Open Source-related community projects. He was a

long-time participant and officer of the IEEE and ISO

POSIX standards groups, representing both USENIX

and EurOpen (EUUG) and has been a regular speaker

and writer on open systems standards since 1991.

“Open Source software to a
certain extent represents

 the one true implementation
of a technology”

JDJ.SYS-CON.com26 September 2006

ith software architecture evolving toward SOA,
many projects in this space have encountered
challenges associated with accessing data.
 As has been said, “The way an organiza-
tion thinks about applications and data must

evolve — it must stop thinking about data as a second-class
citizen that only supports specific applications and begin to
recognize data as a standalone asset that has both value and
utility.”
 In today’s world, two different types of data usage can be
found: traditional architecturally layered applications and SOA
framework-based applications. Naturally, each one comes
with different technological and behavioral characteristics.
 On one hand, there are traditional applications — usually
designed and written in one language with clear separation
between layers, such as enterprise Java with JSP and EJB, or
.NET. Communication between layers happens in memory
without any intermediate protocol (such as XML). On the
other hand, there are SOA frameworks, such as Business
Process Execution Language (BPEL) and the concept of the
Enterprise Service Bus (ESB), offering everything that looks like
a Web Service (exposed through a WSDL) to be orchestrated
and to represent itself as a service.
 “Organizations should establish their data environments
with ‘hubs of specific data families’ that expose data services
that comply with industry standards and service contracts. The
goal is to create a set of services that becomes the authoritative
way to access enterprise data. In this target service-oriented
environment, applications and data work together as peers.
Thus, both an organization’s business functionality and data
can be leveraged as enterprise assets that are reusable across
multiple departments and lines of business.”
 In most cases, modular applications already exist and
therefore data services need not be built entirely from scratch.
This article focuses on aspects of migration and on exposing
application functionality for later use in a SOA. It also discusses
the pros and cons of the technologies being used for accessing
data.

Technologies Used To Implement Data Services
 Table 1 lists common technologies used by applications to
obtain data. The question is which of these different imple-
mentations of data services should you use in a particular
application? There are no hard and fast rules, but this article
provides some guidance. Obviously, they can be differentiated
through different data formats and different access methods.
This article uses these data access technologies to explore the
different strengths and weaknesses of data access with SOA
enablement.
 In a SOA, these technologies are usually composed together,
because not all services are implemented in the same technol-
ogy. This brings up several challenges involving transactional
behavior across boundaries, including performance and mass
data behavior.
 More challenges? So why would you want to introduce a
separate set of services in your architecture versus directly
accessing a data store? The reasons to consider a separate data
service include:
• Defined interfaces: Using data services forces you to

define contracts that are used between the service and its
clients. This is the first step towards abstracting the con-
tract (the interface) from the implementation.

• Loose coupling/decoupling: Although a data access layer
typically encourages good encapsulation and decoupling
of data access functionality, it does not force the issue.
Having a separate data service not only forces a well-
defined contract but also minimizes implementation
details creeping into the client. A client cannot bypass
the interface contract because consumer and provider
are not necessarily implemented with the same technol-
ogy.

• Reuse: Using a common data service automatically
ensures that all consumers can reuse the same imple-
mentation, which leads in the long term to reduced
maintenance costs (bug fixes, changes), because code
is not duplicated. On the other hand, it requires a well-
defined process of change control — because more con-

W

Where Has My
Data Gone?
Accessing Data in a Service Oriented Architecture by Doug Clarke

 & Clemens Utschig

JDJ.SYS-CON.com28 September 2006

sumers rely on a functioning piece of code and potential
downtime affects more than one user.

• Flexibility: Having the implementation completely
abstracted from the consumer through a well-defined
contract offers greater flexibility. Over time, the imple-
mentation technology can change; additional perfor-
mance enhancements can be introduced; or data stores
can be upgraded, migrated, combined, or divided — all
of this without distracting the applications using the data
service.

 Based on the reasons described to introduce data
services into your architecture, the next section takes the
challenges arising from the benefits into consideration
and maps them against available technologies.

Common Data Challenges in a SOA
 In general, the challenges can be divided into four main
groups, each defining a different part of an overall application:
access, enrich, distribute, and persist. Usually you start by
thinking about how to access a certain data store. Should it be
done via handwritten Java code that embeds SQL with JDBC
calls? Should an object-relational mapping (ORM) approach
be taken? Should the Java Connector Architecture (J2CA) be
used to connect to a foreign data source? Is the client Java or
a .NET application — and therefore can a native protocol be
used or not?
 After considering the access options, the next step is to
validate whether aggregation of data across boundaries is
necessary, whether a high data load is expected, and where the
data comes from. All of these options are considered in the dis-
cussion of Challenge 2 (enrich, cleanse, and aggregate data).
 Another major challenge involves which and how many us-
ers plan to consume a service. In particular, the importance of
interoperability should not be underestimated if data is being
pulled from or pushed to a consumer (such as business-activ-
ity monitoring [BAM]). This is described in the discussion of
Challenge 3 (distribute data).
 Last but not least, there is the challenge of writing data back
and guaranteeing consistency across multiple calls to a service
as well as across boundaries. In SOA, use cases are generally
implemented across technological and service boundaries
as they are orchestrated into a process. These questions are
covered in the discussion of Challenge 4 (persisting data).

Challenge 1: Access Data
 Abstraction of data - A domain model is abstracted from
the underlying data store. This model should be designed ac-
cording to the requirements of the client applications. It could
mirror the underlying data store or provide a rich abstraction.
In either case, the consuming application is decoupled from
the physical storage by this model.
 In reality this means that a customer object used in the
application usually differs from the underlying data stores and
their view of data, such as object-oriented versus normalized.

 Speed considerations - Allow for efficient retrieval of
domain objects based on exposed operations. This is basically
the exposure of queries the application needs. It also provides
a natural boundary for testing and for the introduction of
mock data in test scenarios. Because the next generation of ap-
plications and business processes are composites that leverage
these services, data access abstraction must be considered a
key aspect of a service-oriented testing strategy

Challenge 2: Enrich, Cleanse, Aggregate Data
 In modern applications, data usually does not come just
from one place and get presented directly to consumers. It
often needs to be formatted (e.g., a date), aggregated or en-
riched, or cleaned.
 For example, a big part of an employee record might come
from the HR system but the employee’s vacation time is stored
in some other place requiring a merge of those two sources
into one.
 There are several ways aggregation or enrichment can be
implemented. At the most basic level, it can be done natively
in the application no matter what the technology. However,
if the underlying data model changes (or just a column name
changes), several places need to be updated, which can be
time-consuming. This leads to the use of object-relational
mapping solutions because the domain model is easily shared
and the mapping can be changed just in one place. On the
more sophisticated side the data service implementation
could access multiple data sources using native results to
compose the common domain model.
 When multiple data sources return a variety of XML docu-
ments that comprise the common domain model then XML
aggregation is the answer. Due to the evolution of orchestra-
tion and XML as a common data format, BPEL is the perfect
tool for aggregating or enriching data that is already in XML
and later serving it to consumers. Although for large payloads

Clemens Utschig works within

Oracle’s SOA Product Manage-

ment Team responsible for

security aspects and cross

product integration. Aside

from technology, Clemens’

focus is on the project

management and consulting

aspects that come along with

SOA implementations. As a

native Austrian, Clemens’

career with Oracle started in

Europe at the local consulting

services branch — working

with customers on J2EE and

SOA projects, and founded

the local Java community. He

is a frequent speaker at con-

ferences evangelizing either

technology or the human fac-

tor — two key aspects when

introducing new concepts and

shifts in corporate IT strategy.

clemens.utschig@oracle.com

Doug Clarke is a principal

product manager for the

Oracle Application Server

focused on persistence and

Oracle TopLink. Prior to his

current role Doug worked as

a lead developer, trainer, and

professional consultant. Over

the past decade his primary

focus has been on helping

global Fortune 1000 custom-

ers integrate relational and

non-relational data into their

enterprise Java applications.

Doug is a frequent speaker at

conferences and user groups.

douglas.clarke@oracle.comTable 1 Data Access approaches for building Data Services

29September 2006JDJ.SYS-CON.com

FEaturE

and results, using an Enterprise Service Bus might be a better
choice.

Challenge 3: Distribute Data
 When all components and layers reside within one ap-
plication, access is native and in memory. In a SOA, however,
services run in a decentralized manner and in different places,
introducing the challenge of different protocols and even
greater need for solid error handling. What happens if a service
is down or not accessible — how will the application be af-
fected? The use of BPEL offers a great way of composing these
services into one process or composite services, which can be
leveraged later. Using this approach brings more freedom to
the service’s consumers but also introduces another layer that
needs to be maintained.
 One purpose of this is data pulled into several UI technolo-
gies, such as a portal or BAM to monitor performance.
 For example, a supervisor wants to see the performance of
employees in real-time and wants to be able to take corrective
actions (such as rerouting a request to other teams). In this
case, the data from the business process (and its services) can
be pulled out into a BAM instance to create a real-time dash-
board.
 Note: The technology mapping of this section has already

been covered in the Access table.

Challenge 4: Persisting Data
 A data access solution must provide proper transactional
support allowing the application to apply changes to the
data stores through the exposed operations and the sup-
plied changes to the domain model, ensuring that the proper
transactional semantics are obeyed, based on the data store’s
requirements and implementing any necessary concurrency
protection (locking).
 Especially with SOA, more than one application will use
a certain service at the same time, so transaction protection
needs to be considered. One possibility is that each operation

Table 2 How the technology behaves for aggregated data

Table 3 How the technology behaves when being used to access data

JDJ.SYS-CON.com30 September 2006

FEaturE

can be reverted. Another option is to sacrifice loose coupling
to allow clients to use transactional behavior.

Evolving a Multi tier Application into a Reusable Set of
Services
 The goal for the next generation of applications is to morph
them smoothly into a SOA — and not force them to be com-
pletely rewritten. If a clean separation of layers was introduced
earlier, this may sound harder than it actually is. Let’s review
two possible morphing approaches:

1. Traditional application (architectural model)
 Following all the design patterns, a clean separation of
concerns is desirable — especially moving forward to a SOA.
In the model shown in Figure 1, the application (representing
the business logic) talks to the persistence via a defined set
of interfaces and transports its data through Plain Old Java
Objects (POJOs).

2. Morphing into a hybrid model
 Expose just the needed artifacts and functions into service
interfaces (a k a service enablement). These can be further
used in BPEL to orchestrate complex business processes. The
application, on the other hand, still uses the native, in-mem-
ory approach and is not affected at all. The model stays the
same (see Figure 2), and just certain pieces are exposed (the
same interfaces!).

Integrating Data Through Services: A Use Case
 Having discussed the pros and cons of various access tech-
nologies, such as JDBC, J2CA, Web Services, and Enterprise
JavaBeans (EJB) as well as the challenges of accessing data,
it’s time to apply the information gained to a use case.

A

large company runs its inventory system as a mainframe ap-
plication that is maintained and updated through daily batch
jobs. Due to the rising demand of a new front-end system, the
company decided to develop a custom Java EE application,
with a Java Server Faces front-end, capable of serving multiple
clients but holding the mission-critical information in the
back-end. Between those two systems, new items should be
exchanged and enriched with external data from a supplier.
The service for retrieving this information is offered through a
secured Web Service (see Figure 3).
 Connecting these applications – all using different technolo-
gies — serves as a perfect example to illustrate choosing the
right data access, aggregation, and persistence approach to
build a best-of-breed solution.
 Applying the technologies discussed about, J2CA connec-
tors, which provide native access to the underlying technology,
can be used for the mainframe. Most of these adapters also
provide a WSDL interface to the outside world, describing
their exposed services. Each time a new item is triggered, the
adapter fires an event.
 The Java EE application consists of a data access layer built
on top of EJB 3.0 to ensure flexibility in the mapping between
domain objects and the actual database schema. These EJBs
can either be exposed as real Web Services or offer just a WSDL

 Figure 1 Complete separation of logic, with access only through remote protocols

 Figure 2 Layered model in which business logic is used locally as well as

exposed for remote access

“The key to a
successful

transformation
is a solid

understanding
of the purpose of
the data service”

JDJ.SYS-CON.com32 September 2006

interface but require native access.
 In this case, an ESB can be used to provide the running in-
frastructure for orchestrating an overall flexible process. It not
only contains rules for routing and aggregation but also offers
error handling and ensures a high degree of data access and
persistence performance by using native protocols.

Outlined Process Flow (ESB System Diagram)
 As this example shows (see Figure 4), an ESB can support
the loosely coupled principles of a SOA but also address com-
mon data access challenges.

Conclusion
 A data service is a means of decoupling and encapsulating
the access to one or more data stores. This concept offers an
approach to sharing common functionality across multiple
client applications or services. Its physical separation allows
much greater flexibility in implementation and future inde-
pendent evolution while guaranteeing that the consumer and
the data service negotiate on a contract.
 The benefits of this approach include the ability to transpar-
ently aggregate data and even completely change data stores
without requiring changes to its consumers. Additionally, it
allows for a data service that may have once been used only in
a fixed set of applications to be used within a business process
as a more dynamic service orchestrated with declarative pro-
cesses.
 Each technology that has been discussed has pros and cons
(starting with performance and ending with transactionality).
We believe that it is important to keep those in mind and that
the more data-rich the application is (the more mass data it
has) the more a native approach is appropriate. On the other
hand, the more loose coupling is targeted, the more the ap-
proach should lean toward a Web Service-based architecture.
In this sense, using BPEL seems like a great way to enable data
sources into services and allow performance and, to some
extent, transactionality.
 The key to a successful transformation is a solid under-
standing of the purpose of the data service, including the pros
and cons of each technology used. The use of proven data ac-
cess frameworks makes exposing data as services simple while
not sacrificing performance. Good performance is essential
in multi-layered applications, because it is crucial to the user
experience. The best SOA is worth nothing if the users are sick
of using the consuming applications due to their poor perfor-
mance.
 Although having shared data services appears to be an
obvious solution for shared access to the same enterprise
data stores, it does not come without costs. As in all design
and architectural abstractions, the benefits must be care-
fully weighed against the costs and challenges. A vision of the
enterprise’s SOA strategy must also be taken into consideration
when deciding when and where to use data services. This ar-
ticle has attempted to alleviate the difficulty in addressing the
challenges of making these decisions in a SOA by describing
and assessing the characteristics of data accessibility.

Reference
http://webservices.sys-con.com/read/233667.htm

Table 4 How the technology behaves in the context of persisting data

 Figure 3 Data Services Sample Use Case

 Figure 4

33September 2006JDJ.SYS-CON.com

pache James is a full-featured SMTP, POP3, and
NNTP server built using 100% Java and more impor-
tantly it’s been designed from the ground up to be a
mail application platform
 Anyone who’s spent any time working on an ap-

plication that sends e-mails has come across more than his
fair share of bounced e-mails. If you actually read the bounced
e-mails, you probably noticed that many of them either came
from the ISP’s error handler (mailer-daemon@isp.com) or
from an e-mail address that wasn’t on your mailing list. The
bounced message may not even have contained a copy of the
original message. All of above scenarios make it very hard to
figure out who the original message was sent to. Enter Daniel
Bernstein, also known as djb, who in 1997, in response to this
problem of matching bounced e-mail messages to subscrip-
tion addresses, wrote a paper describing a technique he called
Variable Envelope Return Paths or VERP for short. In the paper,
he describes process as:
	 …each	recipient	of	the	message	sees	a	different	envelope	
sender	address.	When	a	message	to	the	djb-sos@silverton.berke-
ley.edu	mailing	list	is	sent	to	God@heaven.af.mil,	for	example,	it	
has	the	following	envelope	sender:

							djb-sos-owner-God=heaven.af.mil@silverton.berkeley.edu

 If the message bounces, the bounce message will be sent
back to djb-sos-owner-God=heaven.af.mil@silverton.berkeley.
edu.
 If God is forwarding His mail, the bounced message will still
go to djb-sos-owner-God=heaven.af.mil@silverton.berkeley.
edu. No matter how uninformative the bounced message is, it
will display God’s subscription address in its envelope.
 But you probably noticed that this article isn’t only about
VERP: Apache James is a full-featured SMTP, POP3, and
NNTP server built using 100% Java and more importantly
it’s been designed from the ground up to be a mail applica-
tion platform. The James mail application platform makes
it a perfect candidate for handling bounced messages using
VERP. Similarly, the JavaMail API is a framework for build-
ing mail and messaging applications using SMTP and POP3.

JavaMail makes it easy to customize the envelope sender ad-
dress, which means Java developers can use JavaMail on the
client and James on the server to build e-mail applications
that enables VERP.
 This article will describe an example VERP implementation,
show how JavaMail can be used to modify the envelope sender
address, and then illustrate how James can be used to recog-
nize and process bounced e-mail messages. It’s not intended
to be an in-depth look at either the Apache James mail server
or the JavaMail API. If you’re interested in learning more about
Apache James, a product review is available on the Sys-Con.
com Web site (http://java.sys-con.com/read/38667.htm) and
an extensive introduction to Apache James on the IBM devel-
operWorks sit (http://www-128.ibm.com/developerworks/li-
brary/j-james1.html). The JavaMail API can also be reviewed
on the Sys-Con.com site: http://java.sys-con.com/read/36545.
htm.

VERP and JavaMail
 Let’s start by looking at the e-mail newsletter that a fictional
store called “Javazon” is sending to its customers. The develop-
ers at Javazon have been using the JavaMail API to success-
fully send the newsletter through their mail server using code
similar to the example below.

	String	sendere-mail	=	“deals@javazon.com”;

	String	toe-mail	=	“ajohnson@cephas.net”;

	Properties	props	=	new	Properties();

								

props.put(“mail.smtp.host”,	mailserver);

								

Session	session	=	Session.getInstance(props,	null);

								

javax.mail.Message	m	=	new	MimeMessage(session);

								

m.setFrom(new	InternetAddress(sendere-mail));

								

m.setSubject(“New	Deals	at	Javazon!”);

								m.setRecipient(javax.mail.Message.RecipientType.TO,		

new	InternetAddress(toe-mail));

A

Mailets and
Matchers
Using Apache James and JavaMail to implement
variable envelope return paths

by Aaron Johnson

Aaron Johnson is a senior

software engineer at Jive

Software. He lives with

his wonderful wife, young

son and dog in a Portland,

Oregon. You can find out

more by reading his blog at

http://cephas.net/blog/.

JDJ.SYS-CON.com34 September 2006

m.setContent(content,	“text/plain”);

								

Transport.send(m);

 The code above will produce an e-mail message with head-
ers that look like this:

Date:	Wed,	26	Apr	2006	21:00:21	-0000

From:	deals@javazon.com

To:	ajohnson@cephas.net

Subject:	New	Deals	at	Javazon!

 Because they want to be good e-mail citizens, the develop-
ers at Javazon use the POP3 functionality in JavaMail to re-
trieve the e-mails that bounce back to the address specified as
‘sendere-mail’ in the example above. Unfortunately, many of
the bounced e-mails come from daemon accounts (instead of
the recipient e-mail address), which makes it difficult to figure
out what e-mail address the original message was sent to.
 As mentioned at the beginning of this article, the only way
to address the bounces that come from daemon accounts is
to use VERP, which is a two-part process. The first is relatively
simple. An e-mail message, according to the SMTP RFC-821
Section 2, is composed of two parts: an envelope that contains
the SMTP source and destination addresses and the message,
which consists of the headers and message body. To create a
VERP-capable e-mail message, you only need to modify the
envelope, which is easily done using the instance of java.util.
Properties associated with the javax.mail.Session. Modifying
the first example, the developers would end up with this:

	String	sendere-mail	=	“deals@javazon.com”;

	String	toe-mail	=	“ajohnson@cephas.net”;

String	verpFrom	=	“deals-”	+	toe-mail.replaceAll(“@”,	“=”)	+	“@

javazon.com”;

	Properties	prop	=	new	Properties();

	props.put(“mail.smtp.from”,	verpFrom);	

props.put(“mail.smtp.host”,	mailserver);

	Session	session	=	Session.getInstance(props,	null);

								

javax.mail.Message	m	=	new	MimeMessage(session);

								

m.setFrom(new	InternetAddress(sendere-mail));

								

m.setSubject(“New	Deals	at	Javazon!”);

								m.setRecipient(javax.mail.Message.RecipientType.TO,		

new	InternetAddress(toe-mail));

								

m.setContent(content,	“text/plain”);

								

Transport.send(m);

 When executed, this code would create an e-mail message
with headers that look like this:

Return-Path:	<deals-ajohnson=cephas.net@javazon.com>

Date:	Wed,	26	Apr	2006	21:00:21	-0000

From:	deals@javazon.com

To:	ajohnson@cephas.net

Subject:	New	Deals	at	Javazon!

 Notice the different “Return Path:” header from the first e-
mail? If the e-mail message bounces back to Javazon, it will go

to the e-mail address associated with the ‘Return Path’ header:
“deals-ajohnson=cephas.net@javazon.com” rather than
“deals@javazon.com.” This is where Apache James comes into
the picture.

VERP and James
 James can be configured and used like any other e-mail
server, but its real power comes from the ability it gives Java
developers to plug right into the mail-processing pipeline.
James enables you to process e-mail messages in the same
way you might process HTTP requests that come into servlet
containers like Tomcat, but in a more flexible manner. If you
want to pre-process (or post-process) HTTP requests in Tom-
cat, you first create a class that implements the javax.servlet.
Filter interface and then you create an entry in your web.xml
that matches certain requests to that class. Your configuration
might look something like this:

<filter>

				

<filter-name>myfilter</filter-name>

				

<filter-class>com.javazon.web.filters.GZipFilter</filter-class>

		

</filter>

<filter-mapping>

				

<filter-name>myfilter</filter-name>

				

<url-pattern>*.jsp</url-pattern>

		

</filter-mapping>

 The servlet container limits how you match requests to a filter:
you’re limited to pattern matching on the URL. Instead of a <filter>
and <filter-mapping>, James gives you a <mailet> made up of two
parts: Matchers and Mailets. They’re described on the James wiki:

“Apache James is a
full-featured
SMTP, POP3,
and NNTP server
built using
100% Java”

35September 2006JDJ.SYS-CON.com

FEaturE

“Matchers are configurable filters which filter mail from a
processor pipeline into Mailets based upon fixed or dynamic
criteria.
 “Mailets are classes that define an action to be performed.
This can cover actions as diverse as local delivery, client-side
mail filtering, switching mail to a different processor pipeline,
aliasing, archiving, list serving, or gateways into external mes-
saging systems.”
 James ships with a number of Mailets and Matchers that
you can use without writing a line of code, but the devel-
opers at Javazon will have to write their own Matcher and
Mailet to handle the bounces generated from their e-mail
campaigns.
 So the first thing they’re going to need to do is create a class
that intercepts the bounced e-mails. A matcher class can be
created in one of two ways: a) create a class that implements
the org.apache.mailet.Matcher interface, or b) create a class
that extends the org.apache.mailet.GenericMatcher class.
Because GenericMatcher already implements both Matcher
and MatcherConfig and because it provides a simple version of
the lifecycle methods, the path of least resistance is to extend
the GenericMatcher. The NewsletterMatcher class is going to
“match” only the recipients where the address of the recipient
starts with the string “deals-”:

public	class	NewsletterMatcher	extends	GenericMatcher	{

	

public	Collection	match(Mail	mail)	throws	MessagingException	{

		 	 	 Collection	matches	=	new	ArrayList();

		

Collection	recipients	=	mail.getRecipients();

		

for	(Iterator	i=recipients.iterator();	i.hasNext();)	{	

		 	 	 	 String	recipient	=	(String)i.next();

		 	

if	(recipient.startsWith(“deals-”))	{

		 	 	 	 	 recipients.add(recipient);

		 	

}

		

}		

		

return	matches;

	

}

}

 The NewsletterMatcher class, as you can see, returns a Col-
lection of String objects, each presumably an e-mail that has

bounced. To do something with these matches, developers will
need to write a class that either implements the org.apache.
mailet.Mailet interface or a class that extends the org.apache.
mailet.GenericMailet class. Again, it will be simpler to extend
the GenericMailet class:

public	class	NewsletterMailet	extends	GenericMailet	{

	

private	static	CustomerManager	mgr	=	CustomerManager.getIn-

stance();

	

public	void	service(Mail	mail)	throws	MessagingException	{

		 	 	 Collection	recipients	=	mail.getRecipients();

		

for	(Iterator	i=recipients.iterator();	i.hasNext();)	{	

		 	 	 	 String	recipient	=	(String)i.next();

		 	

if	(recipient.startsWith(“deals-”))	{

int	atIndex	=	recipient.indexOf(“@”);

		 	 String	rec	=	recipient.substring(0,atIndex)

		 	 	 	 .replaceAll(“=”,	“@”)

.replaceAll(“deals-”,	“”);

mgr.recordBounce(rec);

	

	mail.setState(Mail.GHOST);	 	

}

}

	

}

}

 In the example above, the NewsletterMailet class overrides
the service() method in the GenericMailet class, loops over the
list of recipients in the given e-mail message and then checks
to see if the recipient e-mail address starts with the string
“deals-”. If the recipient e-mail address starts with “deals-” then
the class decodes the original recipient address by retrieving
what is generally the username part of the e-mail address,
replacing the equals sign (=) with an @ sign and then replac-
ing the “deals-” prefix. Then the Newsletter mailet class uses
CustomerManager (a class that the Javazon developers use to
manage customer information) to record the bounced e-mail.
If you were to step through the process, you’d see the recipient
e-mail address start something like this:

deals-ajohnson=cephas.net@javazon.com

“The only way to address the
bounces that come from daemon

accounts is to use VERP, which is a two-part process”

JDJ.SYS-CON.com36 September 2006

OPNET Panorama offers powerful analytics for rapid troubleshooting of complex
J2EE/.NET applications. Panorama quickly identifies how application, web, and data-
base servers are impacting end-to-end performance. With Panorama, you can pin-
point the source of a problem, so time and money aren't spent in the wrong places.

The most successful organizations in the world rely on OPNET's advanced
analytics for networks, servers, and applications.

OPNET Technologies, Inc. 7255 Woodmont Avenue, Bethesda, Maryland 20814 phone: (240) 497-3000 • e-mail: info@opnet.com • NASDAQ: OPNT

© 2006 OPNET Technologies, Inc. All rights reserved. OPNET is a registered trademark of OPNET Technologies, Inc.

www.opnet.com/pinpoint

MAKE ANSWERS TO PERFORMANCE PROBLEMS COME TO YOU.

FEaturE

and	then	change	to	this:

	deals-ajohnson=cephas.net

and	finally	to	this:

	ajohnson@cephas.net

 The last step is to wire the mailet and matcher classes to-
gether in the Apache James configuration file, which is usually
located here:

$JAMES/apps/james/SAR-INF/config.xml	

 You’ll need to make a number of entries. First, you’ll need
to let James know where it should look for the mailet and
matcher classes you’ve created by creating <mailetpackage>
and <matcherpackage> entries inside the <mailetpackages>
and <matcherpackages> elements:

	<mailetpackages>

											 …

<mailetpackage>com.javazon.mailets</mailetpackage>

							</mailetpackages>

							<matcherpackages>

											 …

<matcherpackage>com.javazon.matchers</matcherpackage>

							</matcherpackages>

Then	add	references	to	the	matcher	and	the	mailet	using	a	<mai-

let>	element	like	this:

	<mailet	match=”NewsletterMatcher”	class=”NewsletterMailet”>

													 <processor>transport</processor>

</mailet>

 The match attribute of the mailet element specifies the
name of the matcher class that should be instantiated when
the matcher is invoked by the spool processor and the class at-
tribute specifies the name of the mailet that you want invoked
should the matcher class return any hits.
 After adding these configuration entries and adding the
compiled classes to the $JAMES/apps/james/SAR-INF/lib/
directory, restart the James process.

Testing
 To test the configuration/application, you’ll have to have a
James server configured and available via the Internet via port

25 with a valid DNS name and a corresponding MX record. As
an example, the system administrator at Javazon would con-
figure a machine with James, make it available to the Internet
on port 25, and assign it a domain name like bounces.javazon.
com. The developers could then send an invalid e-mail using
JavaMail to:

bounceme@javazon.com	

 (an account that probably doesn’t exist on the main javazon.
com mail server) with a return path of:

deals-bounceme=javazon.com@bounces.javazon.com.	

 The bounced e-mail will be sent to the server associated
with the MX record for the domain name bounces javazon.
com, which should be the server the system administrator
set up above. The NewsletterMatcher class should ‘match’ on
the “deals-” prefix and then pass it to the NewsletterMailet,
which should record the bounce using the CustomerManager
instance.

Conclusion
 After reading this article, you should hurry on over to the
Apache James Web site, download the latest distribution, and
read the documentation. There are a number of other interest-
ing ways you can improve your e-mail processing by extending
James using mailets and matchers.

References
JavaMail
• http://java.sun.com/products/javamail/
• http://jdj.sys-con.com/read/36545.htm
• http://www.ibm.com/developerworks/java/edu/j-dw-

javamail-i.html

VERP
• http://cr.yp.to/proto/verp.txt

Apache James
• http://james.apache.org/
• http://jdj.sys-con.com/read/38667.htm
• http://www.ibm.com/developerworks/java/library/j-

james1.html
• http://www-128.ibm.com/developerworks/java/library/

j-james2.html
• http://james.apache.org/spoolmanager_configuration_

2_1.html

“There are a number of other
interesting ways you can improve your
e-mail processing by extending James

using mailets and matchers”

JDJ.SYS-CON.com38 September 2006

ADOBE AD FPO

he current polemic with Java and
Open Source boils down to two im-
portant issues: money and power.

Money
 In 1996, Sun created Java and the terms
under which it is distributed. Since then,
the Java Community Process (JCP) has
emerged, allowing companies to partici-
pate in shaping language changes, but the
ownership of trademarks, licensing agree-
ments, branding, and other fundamental
product issues remains unchanged. One
is reminded of this fact every time the
Sun MicrosystemsTM trademark appears
alongside the Java coffee cup logo, or
when one is greeted with the message
“brought to you by Sun Microsystems”
at www.java.com. For anyone to use
the Java-compatible logo on a product
requires verification against the test
compatibility kit (TCK), for which one has
to enter into negotiations with Sun. Java,
the technology, the trademark, and the
language, are owned by Sun.
 The current licensing agreements for Java
generate revenue for Sun in two ways; one is
through direct fees to its licensees, and the
other is through indirect revenue generated
off the back end of Java’s success.
 When asked how much income is gen-
erated from Java, Jonathan Schwartz, CEO
of Sun, replied, “about $13 billion.” He
went on to explain that this figure is calcu-
lated from many sources, highlighting the
revenue generated by licensing products
that sit on top of the Java runtime stack.
http://www.forbes.com/work/manage-
ment/2006/05/04/sun-microsystems-
schwartz-cz_ec_0504schwartz.html This
demonstrates a mind shift on the part of
Sun senior management regarding how
Java income should be generated, with
a move from direct to indirect revenue
streams.

Power
 According to the Oxford English
Dictionary, “power” is “the possession of
control or command over others; author-
ity; ascendancy.”
 For Open Source to succeed power,
must be relinquished and transferred.

One of my favorite essays on the subject
was written by Simon Phipps, the chief
Open Source officer at Sun. http://www.
webmink.net/free/Free-ix.htm In it, he
discusses how the word “free” in Open
Source means much more than giving
away something for nothing; that “`free’
in this context is not about the price; it is
about the liberty. `Free’ here is as used in
the phrase `free speech’.”
 One of the perceived problems of Open
Source often focused on by its naysay-
ers, is that, with disparate groups of
individuals, each with separate agendas,
paymasters, and self-interests, the effort
will collapse under the weight of its own
entropy and confusion. Simon’s counter
to this argument is that a “`community
of code’ maintains a code base of Open
Source components or elements, using
the behaviors and principles of the Open
Source movement. These inherently lead
to better code being created, debugged
and documented faster, not least because
of the scrutiny of the community.”
 I am fortunate to be part of the Eclipse
project which allows me to witness such
dynamics on a daily basis, so I concur that
Simon’s vision of what defines a truly free
Open Source project definitely works in
practice. Within Eclipse, I work with com-
panies that are fierce competitors in the
marketplace with my daytime employer,
however, together we shape and build the
common codebase for the benefit of the
greater good: our collective community of
customers. Examples of the “freedom” that
Simon talks about are that the Eclipse.org
web site does not provide disproportion-
ate links to any of its member companies’
commercial products, the Eclipse code-
base has large and diverse representation
of code committers across its member
companies, and EclipseCon conferences
are not dominated by marketing speeches
from CEOs of any of its member com-
panies. It is the perfect implementation
of Simon’s vision for how Open Source
flourishes when practiced well.

Actions Speak Louder Than Words
 Jonathan Schwartz understands how
commercial offerings that sit on top

of the Open Source stack are key to
Java’s indirect revenue. Simon Phipps
understands the dynamics of how
successful projects operate, writing
in his freedom essay, “Open Source is
not just about the code; it is about the
community. You don’t make a project
Open Source simply by publishing the
source code.”

 When we are told that Java has finally
become Open Source, we can judge its
success or failure by its meeting the fol-
lowing criteria:
• Use of the Java trademark is equal

among all community members, so
that no one community member can
brand a product at “Java XXX” while
dictating that another cannot.

• The image of Java in the marketplace
is of a community of companies. The
Java logo and Java branding are owned
by the community, and not by any one
of its member companies. Websites
such as java.com or java.net cannot
carry trademarks specific to member
companies disproportionately. Links
and marketing stories about commer-
cial products do not favor one member
company over another.

• Content and material for conferences
like JavaOne are selected in a way that
benefits the attendees, rather than ben-
efiting any one community company’s
marketing agenda.

• The number and affiliation of commit-
ters to the core codebase is diverse and
representative of the participation of
the member companies.

• No rhetoric exists in the Java commu-
nity, so for parts of the language that
are outdated legacy, the community
decides what to do for the greater good.

• “Java” certification for one’s own imple-
mentation of the language, on any
hardware or operating system platform,
can be obtained by having access to the
TCK at no cost

I just hope for the future of Java that
behind all of the current discourse on the
subject from Sun, it won’t become another
case of “do as I say and not as I do.”

dESktop JaVa ViEwpoint

 by Joe Winchester

Money, Freedom
and Open Source

T

Joe Winchester is

a software

developer

working on

WebSphere

development tools

for IBM in

Hursley, UK.

joewinchester@
sys-con.com

JDJ.SYS-CON.com40 September 2006

 I know how to change
 my industry.

 I know how to get
 investors on board.

 I can inspire.

 YEAH, THAT’S ME.

 I know people.

 I can lead.

 I need to do this.

I have the ne xt great
 software idea.

Unlock your potential with the help of industry

leaders in Rich Internet Application development.

Discover how everyday we help people just like

you at cynergysystems.com/thatsme.

cynergysystems.com/thatsme

early a decade ago, when Java was still a fledgling
portable software platform and the Tumbling Duke
applet was considered cutting edge, the members
of the newly minted Swing team, including yours
truly, took in a packed JavaOne session given by

Sun’s JavaSoft president, Alan Baratz. He told the assembled
multitude that our team would be delivering a new GUI
toolkit in just 90 days. Although we’d been working on what
was called a “lightweight toolkit” for some time, he hadn’t
bothered to mention the new project deadline to us. Until
that moment. If there’d been enough room, we would have
all fallen off our chairs.
 A rather limited “0.1” Swing release did debut 90 days
later. The fact that developers not only adopted this early

version of Swing, but actually built applications and even
products with it, is testimony to the tidal wave of enthusi-
asm for all things Java that started in the mid 1990s. Sadly,
the reverberations from the initial developer-enthusiasm
spike, the one that occurred with Java’s debut in 1995, began
to fade as the years passed. By late 1998, when we released
Swing 1.0 as part of the “Java 2,” the Swing team was up to
its ears in reality. Performance, native look-and-feel fidelity
problems, and the usual bugs were dragging the project
down.
 Remarkably, the Swing team and the larger desktop
client software group persevered. The implementation of
the Java client software stack was extensively profiled and
tuned, and by the next major Java release, performance was

Its past, present, and future
by Hans Muller and the Swing Team

N

SWING

JDJ.SYS-CON.com42 September 2006

SWING

43September 2006JDJ.SYS-CON.com

respectable. In subsequent releases,
performance ceased to be an issue at
all. Native look-and-feel fidelity and
robustness concerns have also fallen by
the wayside. In JDK 5 and subsequent
JDK releases, the task of rendering na-
tive components has been delegated to
the native GUI toolkit, so Swing looks
just as native as the natives on Linux,
Macintosh, even Microsoft Vista.
 New software fashions tend to have a
half-life of about 18 months. After that
the books start to move to the discount
bin, the conferences go quiet, and de-
velopers move on to the next big thing.
Swing has not suffered that fate. As the
software has stabilized and improved
over the years, it has attracted a loyal
and growing community of developers
who’ve built tens of thousands of ap-
plications deployed to millions of users.
No less of an authority that Evan’s Data
Corporation has reported that “Java
Swing with 47% use, has surpassed Win-
Forms as the dominant GUI develop-
ment toolkit.” Not bad for a (nearly) 10
year old.
 Joe Winchester, the Java Developer’s
Journal Desktop Java Editor, thought
it would be interesting to take stock
of Swing’s future in an interview-style
article and, naturally, we were happy to
oblige. Joe provided most of the ques-
tions and various members of the Swing
team, past and present, have provided
answers.

	 The	Desktop	Java	track	at	JavaOne	
2006	was	one	of	the	best	attended	and	
there	was	a	lot	of	interest	around	Swing.	
This	seems	a	little	surprising,	given	all	
of	the	hoopla	surrounding	new	software	
trends	like	AJAX,	and	the	debut	of	
Java	EE	5.
 There are various ways to slice the
data from JavaOne, like the number of
attendees in our sessions, the relative
popularity of our sessions, the ratings
for individual talks, and the average
ratings for our track overall. We were
quite pleased with all of these metrics:
the attendance numbers were great,
the sessions were popular, the Desktop
track had some of the top-rated talks in
the conference, and the Desktop track
overall was near the top of all tracks.
 However, our favorite metric to wax
poetic about this year is this: our par-
ticipation from external speakers was
higher this year than ever before. For

Contributors to this

article include the

following past and

present members of

the Swing team:

Richard Bair

Chet Haase

James Gosling

Romain Guy

Michael Knyazev

Rick Levenson

Josh Marinacci

Phillip Milne

Hans Muller

Ethan Nicholas

Alexander Potochkin

Scott Violet

Steve Wilson

Arnaud Weber

Jeff Dinkins

Shannon Hickey

Igor Kushnirskiy

Tim Boudreau

Thorsten Laux

 Figure 1 Swing Windows Look and Feel on XP

 Figure 2 Swing Look and Feel on Vista beta (5384)

 Figure 3 This is not a sketch; it’s the Napkin Look & Feel. See http://napkinlaf.sourceforge.net/

JDJ.SYS-CON.com44 September 2006

i: www.backbase.com t: (866) 800-8996 e: sales-us@backbase.com

© Backbase BV - all rights reserved. BACKBASE is a trademark of Backbase BV.

AJAX for Java

Backbase offers a comprehensive AJAX
Development Framework for building Rich Internet
Applications that have the same richness and
productivity as desktop applications.

The Backbase AJAX Java Edition:

is based on JavaServer Faces (JSF)
runs in all major Application Servers
supports development, debugging and deployment in Eclipse
embraces web standards (HTML, CSS, XML, XSLT)

Download a 30-day Trial at www.backbase.com/jsf

•
•
•
•

example, in 2005 we had something like 11 Sun talks and
eight external talks. This year, we had only six Sun talks and
14 external talks.
 There are a couple of takeaways here, but the most
interesting one in the context of this article is that we ac-
cepted a majority of external talks because people are doing
some seriously great stuff with Desktop Java, and had some
excellent and deep talks about their work. This included
interesting case studies, as usual, but it also included some
wonderful presentations on real-world development needs,
such as Swing frameworks, data binding, or threading.
The fact that there are known experts in the world like Ben
Galbraith, Karsten Lentzsch, and Scott Delap who can give
in-depth views into how to deal with this stuff is fantastic;
it means that there is a growing community of people who
know the platform well, and that JavaOne is not just about
Sun evangelizing its platform.
 We’re hoping to see another excellent set of presentation
submissions this year; let’s keep that Desktop track momen-
tum!

	 What	are	the	right	ingredients	for	a	renaissance	in	Swing,	
and	do	you	think	they’re	there	at	the	moment?
 It’s possible that we’re in the middle of a Swing renais-
sance, although the evolution of the Desktop Java platform
and the growth of its use has been pretty steady for a longer
period of time than the typical technology era.
 There clearly has been a renaissance of desktop user
expectations recently, and Swing does fit rather nicely into
that. Web users are no longer satisfied with glorified interac-
tive brochures; they’re demanding the same rich interactive
experience they’ve always had with standalone desktop
applications. Web-started Swing applications (even applets)
provide that. Modern desktop applications also depend
more and more on data pulled from various Web services.
To provide dynamic, directly manipulatable visualizations
of data drawn from the Net requires many things, not the
least of which is support for highly threaded desktop ap-
plications. Swing and Java SE provide extensive support for
this kind of work.

	 Tell	me	about	the	SwingLabs	project.	What	are	its	aims,	
and	how	do	you	see	it	working	alongside	mainstream	Java	SE	
development.
 SwingLabs is an open source project on Java.net that
provides tools and libraries to help you make your Swing
apps better. Swing Labs is entirely desktop focused and
the name tries to express the idea that some of the projects
may eventually make it back into Java SE. The SwingX sub-
project, for example, has a date picker, an error dialog, an
Outlook style task pane, and a sortable table model. These
are components people have been wanting for years. Some
or all of these may make it into future versions of Java, but
you can try them out now at swinglabs.org.
 SwingLabs has subprojects for other cool things like
animations (the Timing Framework), working with threads
(SwingWorker), using the native Web browser (the JDIC
project), and working with mapping and Web services
(the SwingX-WS project). You can find SwingLabs at www.
swinglabs.org and swingx.dev.java.net.

	 There	is	a	lot	of	interest	in	projects	like	data	binding	and	
the	application	framework.	What	is	the	thinking	behind	
these?
 Both of these JCP standard efforts, JSR-295 and JSR
JSR-296, respectively, have the same overall goal: simplify
building Swing applications. Both projects aim to do so by
eliminating much of the boilerplate code required by com-
mon application types.
 JSR 295, “Java Beans Binding,” trivializes keeping a pair
of properties in sync, including automatic type conversion
and validation. It also provides support for Java collections,
database types like RowSets and (new in Java SE 6) DataSets,
and Swing component models.
 JSR 296, “Swing Application Framework,” provides sup-
port for common application elements, notably resources
and actions, as well as the application startup/run/shut-
down lifecycle. Simplifying resource injection and writing
multithreaded applications are significant goals.
 We’re hoping that the work on JSRs 295 and 296 will
be completed in time for the Java SE 7 release. Prototype
implementations of the APIs will be evolved out in the open,
and we plan to make versions available for the current Java
SE 5 and Java SE 6 releases.
 The work on these JSRs reflects a trend. We’re focusing
more of our energy on providing higher-level support for
application building.

	 Does	this	mean	that	Swing	is	moving	beyond	just	being	a	
GUI	toolkit	toward	a	more	complete	solution?	
 Yes. We look forward to a future where all applications
will be built with Swing. From accounting software to
computer vision systems, all software will be Swing, all the
way down. In fact, we don’t plan to rest until all things, from
laundry soap to city governments, from fast food to artificial
limbs have been created with Swing. The complete solution
will make Swing literally the fabric of our lives. We’re march-
ing towards intergalactic Swing domination.
 Ahem.
	 [Note	to	editor:	Please	consider	the	previous	statement	off	
the	record.]
 When you consider the overall desktop client stack, the
extensive support for graphics and internationalization and
deployment, and beyond that the overall Java SE platform,
networking, and threads, and database access, and all the
rest, what we’re really up to is trying to simplify building
complete solutions. All of the building blocks are there;
what’s important is making it easy to put them together.
 Two important aspects of that are up-leveling, which was
mentioned earlier, and “toolability.” Historically, we have
not been particularly strong on the tools front, supporting
Swing in tools has required a great deal of custom work.
There’s no silver bullet for fixing that, and most GUI toolkits
make similar demands of tools. However, we are mindful of
the need to create APIs that take tools support into account.
The GroupLayout layout manager, which was designed with
direct manipulation GUI layout design in mind, is a good
example of that.

	 Some	developers	like	to	use	Swing	to	create	very	high-	fi-
delity	desktop	applications	and	shy	away	from	its	emulated	

JDJ.SYS-CON.com46 September 2006

widgets,	whereas	others	seem	to	enjoy	its	lightweight	flexibility	
to	produce	very	creative	and	rich	user	interfaces	with	dynamic	
content.	Which	set	of	users	do	you	most	see	as	your	target	user?
 With Swing, it’s possible to have your cake and eat it too.
If you want your buttons to look exactly like native buttons
on Vista, we support it. If you want your buttons to look like
squishy Jelly Bellys (tm), we support that too. The ability to
support multiple look and feels is core to Swing’s design.
 In the early releases, Swing’s rendering of platform-native
components was off in a number of areas, and we got our
collective ears filled with complaints about that. As of JDK 5
update 8, we’ve fundamentally changed the way native L&F
components are rendered on Windows. Swing on Windows
XP (and on the upcoming Windows Vista release) uses the na-
tive UXTheme API to render components. This means there’s
no guessing or mimicry. GUI components will look exactly
like their native counterparts because they’re rendered by
the same code. This approach also works nicely for Windows
desktop themes, even third-party visual styles. When Vista
finally ships, Swing apps will look native. You’ll see similar
changes, based on the GTKStyle class, for Linux and Solaris
in the JDK 6 release.
 The SwingSet demo screenshots (see Figures 1 and 2) were
made on Windows XP, and an early beta of Windows Vista.
 For those developers who want a unique look to their
application, there are many options. Synth makes it much
easier to create a custom look and feel from scratch. You
can also buy or use a third-party look such as Plastic or Al-
loy. And, of course, you can write your own Swing look and
feel from scratch. If those approaches sound like too much
work, it’s easy to customize individual component classes,
to change their behavior, add animation, whatever you can
think of.
 The Napkin Look and Feel is an extreme example of what’s
possible with a custom Swing look and feel. It was written so
that early versions of desktop applications with provisional
GUIs wouldn’t give anyone the mistaken impression that the
application was actually finished. It’s also pretty funny (see
Figure 3).

	 There	is	a	lot	of	interest	in	technologies	like	AJAX	and	Web	
2.0	that	enhance	the	browser	experience	to	be	a	richer	user	
interface	experience.	Do	you	see	this	as	a	threat	to	Swing?

 Figure 4 SWT lead Steve Northover and sometime Swing engineer Tim Boudreau (facing camera) singing Kumbaya

at this year’s EclipseCon [Although Steve swears it was Led Zepplelin - Ed.]

 Figure 5 The Aerith application lobby

“SwingLabs is an open source
project on Java.net that provides tools
and libraries to help you make
your Swing apps better”

47September 2006JDJ.SYS-CON.com

 It wouldn’t be honest to say that we don’t feel somewhat
threatened by AJAX or any of the other desktop client tech-
nologies that are competing for developers’ attention, tools
support, and recognition in the finer trade and technical
periodicals. On the other hand, competition is healthy and
the growth in user’s expectations of Web-based desktop ap-
plication plays to our strengths.
 Some of the advantages of Swing applications are:
• Can run online or offline.
• Native look and feel if you want it.
• High-performance 2D and 3D graphics.
• Support for visualization and direct manipulation of

large data sets. No paging through tables of results or
waiting for the server to compute the presentation of the
next bit of data.

• Full access to the desktop (for signed apps).
• The Java software platform is deep and wide. Threads,

collections, security, database, XML – there’s an entire
article here.

• Integration with the client OS desktop, like drag-and-
drop with other applications.

• Hundreds of component libraries, lots of tools, large
robust Java developer community.

	 Some	companies	moved	away	from	desktop	apps	toward	
Web-based	frameworks	simply	for	ease	of	deployment.	What	
is	going	on	in	JNLP	to	help	people	who	want	rich	desktop	ap-
plications	with	a	simple	one-touch	deployment	that	has	the	
same	ease	of	use	as	a	browser	URL?

 Easier deployment continues to be a focus for the desk-
top group.
 One aspect of simplifying deployment is making sure
that, in most cases, Java SE is already installed on users’
PCs. To that end, we have bundling agreements with the
top ten (and many more) PC OEMs, and we’re getting new
OEMs signed up all the time. At this point the majority of
new PCs come with Java SE 5 pre-installed. We’re also seeing
phenomenal download rates: in the last 12 months we’ve
served up about a quarter of a billion downloads. That’s a
lot.
 For platforms that do not already have Java installed, we
continue work on easy-to-use mechanisms for installing
Java SE and for launching Java SE applications. Back in June,
we published an article about the auto-install features that
are part of JDK 5 (http://java.sun.com/developer/technical
Articles/JavaLP/javawebstart/AutoInstall.html). The article
discusses an ActiveX component for Windows/IE that
detects whether Java is installed, checks it against a desired
version, installs Java if necessary, and launches a given Java
Web Start application. There are also various JavaScript
mechanisms that can be used to detect Java on browser
platforms and help the user to install and launch Java as
appropriate.
 This is the model we’d like to work toward going forward:
developers should be able to deploy their applications and
applets in such a way that the browser can detect whether
the user needs to install Java, and, if so, will perform that
installation for them and launch the application.

 Figure 7 Aerith trip report editor

JDJ.SYS-CON.com48 September 2006

 We expect to develop and deliver modules and approach-
es to assist with this going forward; look for more articles
and deployment components in the future.

	 Both	Microsoft	and	Adobe	have	implemented	declarative	
GUI	programming	(XAML	and	MXML,	respectively).	Are	there	
similar	plans	at	Sun	for	the	future	Swing	versions?
 There are some good open source languages that we’ve
been keeping a close eye on. JAXX (http://www.jaxxframe-
work.org/), in particular, is quite similar to Adobe’s MXML
- it is fully compiled, has nice data-binding features, and is
styled using CSS. The biggest difference from MXML is that
instead of using ActionScript and Flash, JAXX uses Java and
Swing, so it’s both faster and more powerful.
 It’s hard to say if Swing will ever directly incorporate a
declarative UI language, but the open source solutions that
exist today are definitely worth a look.

	 How	do	you	see	the	relationship	between	Swing	and	SWT	
both	at	the	moment	and	moving	forward?
 On a personal level the relationship between the two
teams is friendly as can be plainly seen in the undoctored
photo in Figure 4.
 When SWT first debuted, we made some changes to
ensure that Swing components would work within SWT
applications; however, mixing two GUI toolkits in a single
application is notoriously difficult. Over the years demand
for a bridge has persisted within the Eclipse/RCP com-
munity, however, the technical problems haven’t become

any simpler. Nevertheless the two development teams have
settled into a peaceful coexistence.

	 How	important	do	you	think	IDE	tools	are	for	the	adop-
tion	and	usage	of	Swing?
 For the longest time we’ve held the line at, “We do the
API, tool vendors write the tools.” That’s led to some embar-
rassments on our part in the form of untoolable APIs and

 Figure 6 The Aerith 3D photo viewer

49September 2006JDJ.SYS-CON.com

difficult or unusable tools; not good! XEmacs and vi are
certainly enjoyable, but if you ever want more than rocket
scientists to use the platform, you need compelling tools.
Thankfully we’ve awakened to this fact.
 For Java SE 6.0, we’ve worked closely with the NetBeans
folks to address one of the hardest problems in Swing:
layout. This partnership has resulted in a world-class tool,
Matisse, that makes it trivial to create visually appealing
layouts. With Matisse, you no longer need to know about
layout managers, instead the user focuses on arranging the
components in a way that is immediately familiar to nearly
all developers.
 We will continue to work closely with NetBeans and other
tool vendors to make sure new APIs are toolable. The expert
groups for 295 and 296 have numerous tool vendors on them,
including companies such as Oracle, JetBrains, and Borland.

	 There	was	a	lot	of	interest	at	JavaOne	in	the	timing	frame-
work	and	some	of	the	very	polished	demos,	especially	the	
keynote	flickr	demo	and	the	Extreme	makeover	e-mail	client.	
Are	these	available	for	developers	to	download	the	code	and	
see	what	was	done	under	the	covers	?
 The code for the extreme demo e-mail clients will be
made available later this year; look for announcements
about that on javadesktop.org. Aerith, the Flickr/Google
Maps demo shown during the keynote, was released online
at aerith.dev.java.net. As you can see in Figures 5-7, Aerith is
quite a looker.
 We weren’t able to release the Aerith demo quite as
promptly as last year’s SwingLabs JavaOne keynote
demo. That one was actually released while the keynote
presentation was underway. This year there was a bit of
delay because the SwingLabs team wanted to clean up
the code to make it a little easier for other developers to
learn from it. Though it took more time, we think it was
worth the wait. The source for many of the components
that went into Aerith are available in their own projects
including JOGL (Java bindings for Open GL at jogl.dev.
java.net), the mapping component (swingx-ws.dev.java.
net), and the animation framework (timingframework.
dev.java.net).

 Chet Haase: Did someone say animation? [Editors	note:	
At	this	point	the	interview	was	interrupted	by	the	appearance	
of	a	marching	band	led	by	(drum	major)	Chet	Haase.	It	took	
a	while	to	get	the	brass	section	to	quiet	down,	and	to	make	
Chet	stop	leaping	around	and	twirling	his	baton.	Eventually	
we	were	able	to	resume	the	interview.]
 The Timing Framework, in particular, is not specific to
Aerith, but is instead a general framework that simplifies
creating and running animations. The core facilities of java.
util.Timer and javax.swing.Timer leave much to be desired
in terms of the amount of work a developer must do to
actually use animations in a Swing application. This prob-
ably helps explain why there are not many Swing applica-
tions that use animated effects. Hopefully, with the Timing
Framework, we can help change that and make it easier for

Swing developers to write dynamic applications that use
animated effects.
 The framework is still in flux, but the current project site
has working code that we encourage you to check out and
use. In the meantime, we are refining the API and capabili-
ties to make it more powerful as well as more easy to use.
	 If	you	could	re-do	Swing	all	over	again,	what	would	you	
do	differently	and	why?
 Rather than just provide one answer to this question, we
decided to give every person who’d worked on the Swing
project at Sun a shot at it. The first response rolled in less
than five minutes:

James Gosling:
• Delete half the methods. The “747 cockpit control” thing

got way out of control (i.e., just do the things that actu-
ally matter, not all the things that someone thinks could
possibly matter in some obscure case)

• Rethink events and listeners; e.g., there are way too many
addXxxListener() methods.

• Make JOGL part of SE and integrate it more cleanly with
2D.

• Get rid of 1.0 compatibility!
• Get rid of deprecations!
• Building new L&Fs is too hard. This is one of the areas

where it feels like we overgeneralized
• Fold in a pile more standard Choosers (take all of the

cool stuff in javadesktop.org and fold it into SE).

 Ouch. Fortunately, not 10 minutes later, another response
rolled in from left field:

Chet Haase:
 I would have sold SUNW at $63.

 Over the next two weeks, many more responses rolled in.
Some pithy, some painful, a few funny, and a rare gem that
was a nice combination. Here’s a sampling:

Steve Wilson (original Metal L&F author, now a Sun Microsystems
Vice President):
 We should have written (and shipped) our own GUI
builder in Swing in tandem with building the toolkit - which
we didn’t do because we were too worried about hurting
Symantec and Borland’s Java tools businesses. Boy, in retro-
spect, it’s good thing we didn’t hurt those! Oh, wait...

Phil Milne (original author of JTable among many other contribu-
tions):
 My first memory of life on the Swing team was the mo-
ment when I uncovered the 20 classes that performed the
role of the Button class in NeXT’s appkit. Soon the mys-
tery was solved when kind colleagues patiently explained
Swing’s architecture and how it laughed in the face of com-
mon technical problems such as your Apple desktop spon-
taneously turning into a PC. Imagine my surprise when I
checked my diary the other day to discover that the number

Hans Muller is the CTO for

Sun’s Desktop division.

He’s been at Sun for over

15 years and has been

involved with desktop GUI

work of one kind or an-

other for nearly all of that

time. He’s been involved

with the Java project since

its earliest days and led

the Swing team and later

all of the client Java work

at Sun.

hans.muller@sun.com

JDJ.SYS-CON.com50 September 2006

	

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher fails
to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess of the
cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The Advertiser is
fully responsible for all financial liability and terms of the contract executed by the agents or agencies who are
acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject to change by
the Publisher without notice. No conditions other than those set forth in this “General Conditions Document”
shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the content of their
advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the discretion of the Pub-
lisher. This discretion includes the positioning of the advertisement, except for “preferred positions” described
in the rate table. Cancellations and changes to advertisements must be made in writing before the closing date.
“Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 Quest www.quest.com/JavaCode 2

 Altova www.altova.com 978-816-1600 4

 IBM ibm.com/takebackcontrol/flexible 7

 Intersystems www.InterSystems.com/Cache21P 617-621-0600 13

 OPNET www.opnet.com/pinpoint 240-497-3000 15

 SAP TECHED www.sapteched.com 17

 Fiorano www.fiorano.com/downloadsoa 800-663-3621 23

 Cynergy www.cynergysytems/thatsme 27

 Backbase www.backbase.com/jsf 866-800-8996 31

 Tibco www.tibco.com/mk/gi 800-420-8450 35

 Instantiations www.instantiations.com/rcpdeveloper 800-808-3737 43

 RogueWave Software www.roguewave.com/developer/downloads 47

 Roaring Penguin www.roaringpenguin.com 613-213-6599 49

 Real World Flex Seminar www.flexseminar.com 201-802-3020 53

 AJAXWorld Conference & Expo www.AjaxWorldExpo.com 201-802-3020 54, 55

 Northwoods www.nwoods.com 800-434-9820 57

 LinuxWorld Conference & Expo www.LinuxWorldExpo.com 61

 SoftwareFX www.softwarefx.com 63

 Parasoft www.parasoft.com/JDJmagazine 888-305-0041x3501 64

of times this had actually happened to me over the last eight years
was zero! A more AppKit-like API then: smaller, lighter, faster and
designed to work well with a GUI builder.

Romain Guy (Synth L&F developer, the mad genius behind countless demos,
etc...):
 Real quick cause I’m leaving for China in a few hours. I would
make Swing entirely vector-based (i.e., resolution independent)
with as many built-in effects and animation support as possible.

Rick Levenson (first engineering director for the Java SE desktop groups):
 If I could re-do Swing all over again, I would make sure this time
to actually contribute something more meaningful than just my
bouncing head...(see Figure 8).

Arnaud Weber (all-around early Swing developer and performance tuner):
 If I could re-do Swing all over again, I would spend more than
one week on ComboBox. Seriously, I believe I would focus a lot
more on building a real application framework instead of simply
delivering a graphical user interface toolkit. I would also greatly
simplify all the type-safe listeners and replace them with more
generic notifications. In my opinion, all these small inner classes in
the client code not only have a performance impact but also make
everything more complicated than necessary.

Scott Violet (long time Swing tech lead and architect):
 I wish I knew how to spell; every time I see insertAtBoundry
(HTMLEditorKit.InsertHTMLTextAction) and insureRowContinuity
(DefaultTreeSelection) I feel ill.

 This last response caused current Swing engineer Alexander
Potochkin to bring up the following backwards-compatibility em-
barassment that we’d all prefer didn’t exist:

//	from	java.awt.event.KeyEvent

public	static	final	int	VK_SEPARATER						=	0x6C;

public	static	final	int	VK_SEPARATOR						=	VK_SEPARATER;

 Of course it didn’t end there. There were followups and escala-
tions; the e-mail thread is probably still sputtering away as you read
this, but we’ll spare you.

	 What	are	the	most	important	things	that	are	going	to	occur	in	
Swing	over	the	next	five	to	10	years?
 In five to 10 years, in addition to tooling around in ethanol-pow-
ered flying cars, we expect users to be interacting with computers
via datagloves and contact lenses with LCD displays. By then, the
large glass panels Tom Cruise bossed around in “Minority Report”
will look as old fashioned as teletypes and paper tape.
 Seriously though, it’s pretty clear we will need to continue to
work on making Swing, and the Java platform as a whole, easier to
use. We’ve begun work down that path with JSRs 295 and 296; there
are many other things that could be done.
 We’ve all been impressed by how popular AJAX has become in
such a short time. At least part of its popularity stems from the
relative ease with which you can reuse what others have done in
novel ways. For example, we’ve all come across Web sites that make

51September 2006JDJ.SYS-CON.com

something new from Google maps. We’ve got to do the same
for Java and Swing. We need to make it trivial for newbies to
get apps up and running in hours, not days or weeks.
 A key part of this change will be tools. No one wants to
read thousand page tomes anymore! Developers want to
start up a tool and in a matter of hours have something
compelling that’s just a button press away from being de-
ployed on the Internet. That is what we have to strive for.
 We recently saw a slide that showed how growth in GPUs
is outpacing growth of other components of a computer.
We’ll continue to look for ways to make better use of GPUs
in applications. You can see this in Vista and Leopard - rich
animation and graphic effects in nearly every app. While we
plan on doing work in this area for Java SE 7, I suspect we’re
just seeing the tip of the iceberg as far as what is possible.
 Another desktop trend that’s going to have a big impact
on what desktop applications can do is the number of CPU
cores in typical machines. Today, machines with two cores
are common. Given the ruthless more/bigger competi-
tion in the PC business, we can probably expect desktops
with dozens of cores in 5-10 years. This is already reality in
the server world and Java’s extensive support for threaded
programming will serve us well. Making it possible, even
easy, for Swing app developers to harness all of that parallel

power will be a challenge for us in the years ahead.
 Our developer community will continue to be an impor-
tant ingredient in whatever we do. You, as the end develop-
er, know what is best for your problem domain. By working
closely together we can make sure whatever we develop ad-
dresses both needs. The JDK development community has
been tremendously successful in this area, and we continue
to look for new ways to make it better.

		 What’s	the	best	place	to	learn	more	about	what’s	happen-
ing in	Swing	and	to	stay	abreast	of	all	the	new	features?
 For official documentation and articles, please see the
Java Desktop Web pages on java.sun.com: http://java.sun.
com/javase/technologies/desktop.
 You can not only stay abreast of new features but can ac-
tually participate directly in the future of Swing by looking
at and joining the SwingLabs project on java.net: http://
www.swinglabs.org.
 We’d also like to urge you to read javadesktop.org daily,
where you’ll find several Java Desktop luminaries (from
both inside and outside Sun) blogging, as well as newsfeeds,
discussion forums, and product announcements by devel-
opers using Java desktop technology: http://www.javadesk-
top.org.

 Figure 8 Bouncing heads of the Swing development team

JDJ.SYS-CON.com52 September 2006

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED VISIT WWW.AJAXWORLDEXPO.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

HYATT REGECNY SILICON VALLEY

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED VISIT WWW.AJAXWORLDEXPO.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

HYATT REGECNY SILICON VALLEY

hen MailReader – an
example application bun-
dled with the Struts Action
framework – was created

six years ago, most Java developers had
yet to discover unit testing. Conse-
quently neither the Struts framework
nor the MailReader were created test-
first. Since then, we’ve bolted a few
unit tests onto the Action framework,
but the MailReader for Struts 1.2 still
has no developer tests at all.
 Over the last 10 years, testing has
become more popular with develop-
ers. Much of this popularity can be
attributed to the JUnit framework: a
simple effective tool for many teams.
But JUnit isn’t enough. It makes writ-
ing tests easier, but we still have to
write the tests. Many of us despair at
the notion of writing even more code
to test the application code we’re al-
ready writing. What we need are tools
that can write most of the tests for us.

Software Agitation
 Software Agitation exercises and
analyzes Java binary code and gener-
ates observations about how the code
behaves. Developers can quickly cre-
ate tests based on these observations,
often without writing any new code.
This article walks through using Agita-
tor to create unit tests for the Struts
MailReader application.
 The flagship software agitation tool
is Agitator by Agitar Software. The tool
rapidly creates observations of code
behavior, and helps the developer
determine if the code is working as ex-
pected or see if Agitation has revealed
unexpected behavior.
 From within the Eclipse IDE, we
can promote a valid observation to
a unit test, or we can trace through
the code to change the behavior. If
the application code is valid, but the
range of acceptable values needs to be
adjusted to demonstrate correct be-

havior, we can assign custom factories
to a parameter. Along with factories,
Agitar provides for automatic “Domain
Experts” that we can use to test code
peculiar to our own API or to test code
peculiar to frameworks like Struts.

Getting Started
 After launching Agitator’s version of
Eclipse, we can create a new project
using the “Java Project with Agitation”
template. For this project, we point
Eclipse at the root of the Struts 1.2
source tree. We have a library of JARs
for the Struts 1.2.8 distribution, which
are easy to add to the Eclipse Build
Path as “External JARs” along with a
reference to the servlet JAR for Java 2.3.
 The one other thing we have to do is
unselect irrelevant packages as source
folders. In Struts 1.2, the MailReader
source is mixed in with packages for
the rest of the framework distribution.
In the end, we have two source folders:
src/example and web/example.
 We can open the “Agitator” view
from the menu bar, and “Agitate” the
package containing the five MailRead-
er business classes [org.apache.struts.
webapp.example.memory].
 A New York minute later, Agitator
has done its thing. Three classes are in
good shape, with 100% code coverage.
Two of the five classes were flagged
with warning symbols. The MemoryD-
atabasePlugIn class weighed in at 70%
coverage. The key class, MemoryUser-
Database, had 38% coverage. The code
coverage for each is shown in Table 1.
 Let’s start with the low-hanging
fruit and review the three classes with
100% coverage: MemorySubscription,
MemoryUser and TestUserDatabase.
 MemorySubscription and Memory-
User represent database entities. Being
standard JavaBeans, these classes were
easy for Agitator to test. Each of the
JavaBean properties has a standard
unit test to ensure that the field is set

by the parameter.
 The only two methods lacking tests
are the constructor and toString. The
constructor is simple, but, still, Agita-
tor has generated some essential tests
like:

this.getHost()	==	host

this.getUser()	==	user

Table	2	-	MemorySubscription	Constructor	

Method

				public	MemorySubscription(MemoryUser	

user,	String	host)	{

								super();

								this.user	=	user;

								this.host	=	host;

				}

 We can mark these as unit tests to
prevent simple silly mistakes like as-
signing a parameter back to itself.
 The toString method creates a
textual representation of the class.
The method looks hard to test with a
known set of input data. For now, we
can change the method’s property to
“Exclude from testing.”

				public	String	toString()	{

								StringBuffer	sb	=	new	StringBuffer

(“<subscription	host=\””);

								sb.append(host);

//	...

								if	(username	!=	null)	{

												sb.append(“	username=\””);

												sb.append(username);

												sb.append(“\””);

								}

								sb.append(“>”);

								return	(sb.toString());

 Reviewing observations for the
other classes and methods, we find
several other assertion candidates.
Each of these candidates corresponds
to assertions that we might have
made in a conventional JUnit test. For
example, setting the pathname prop-

product rEViEw

by Ted Husted

What to Do If Your
Code Has No Tests

W
Tools that practically write tests by themselves

Ted Husted (http://husted.

com/ted/) is a software

engineer and an active

member of several Open

Source projects hosted

by the Apache Software

Foundation, includ-

ing Struts, iBATIS, and

MyFaces. His books include

JUnit in Action, Struts in

Action, and Professional

JSP Site Design. He also

is a consultant for Agitar

Software. Check out his

blog at http://husted.

com/ted/blog/.

JDJ.SYS-CON.com56 September 2006

erty also sets the pathnameNew and
pathnameOld fields. We didn’t have
to express that fact to Agitator. On its
own, the software observed that

	@EQUALS(this.pathnameOld,	“database.xml.

old”)

 All we have to do is confirm that the
observation is an assertion that we
should test. If we were writing a JUnit
test, we’d have typed-out code like:

	assertEquals(this.pathnameOld,	“database.

xml.old”);

 With Agitator in play, we just point
and click.
 Not bad. After only a few minutes
of clicking around, we have almost 80
test points. Perhaps most important,
these test points will automatically
evolve with the code – something that
hand-coded tests can never do.
 Now, what’s the problem with the
other two classes that had less than
100% coverage?
 Agitator displays a legend next to
the lines in a class to show how often
each line of code is being reached
by Agitation, or if the line was even
reached in the first place. In the case
of MemoryUserDatabase, we can see
that there are a lot of red lines after
an input-output call, indicating that
the code isn’t being reached. Clicking
through, it’s easy to see why many of
the Exceptions were being thrown:
“File Not Found.”
 The “Memory” implementation
of the MailReader data access object
loads a list of Users and their e-mail
Subscriptions from an XML document
into an object graph stored in main
memory. (Hence, the package name.)
The file wasn’t found because Agitator
had no way of guessing the right file
name. For now, I mark the problematic
classes or methods “Exclude from test-
ing” – at least until we can learn a bit
more about Agitator.
 Excluding the eight input-output
members lowered the overall test
coverage. But, even so, in only a few
minutes, we were able crank up Agita-
tor for the first time, create over 80
test points, and yield a test coverage of
around 40%.

Agitating Struts
 The Agitar website hosts a 47-min-
ute “webinar” on its Struts Expert. I
watch this and skim the documenta-

tion.
 Now that we’ve had a taste of
Domain Experts, let’s put the Struts
Expert through its paces.

LogonAction
 The webinar mentioned the
standard Struts Expert, which can be
found and enabled on Agitator/Plugin
Experts menu. Eclipse is not displaying
any red marks, so the code seems to
be compiling. Let the Struts Agitation
begin!
 After Agitating the MailReader code
base with the Struts Expert enabled,
a number of red marks popped up in
the Package Explorer. Drilling down,
we find error icons next to the Action
execute methods. The pop-up hint
explains that the Struts configura-
tion can’t be found. Meanwhile, the
Console view contains several
warnings that a ServletContext
can’t be found either.
 Returning to the Agitator
menu, we find the likely item
“Create J2EE Environment.” A
wizard leads us through creat-
ing a default environment, and
even includes a “Test” button so
we can check our work.
 Now that we have a J2EE
environment, for good mea-
sure, we pop back to the PlugIn
Experts menu and enable the
J2EE expert too. After another
Agitation, there are still red
marks, but the messages are
functional rather than systemic,
with remarks like “Coverage
failed” and “Outcome failed”.
 Opening up LogonAction, we
find the Struts We already have
67% coverage, and the execute
method has partitions for the
various Struts outcomes: regis-
tration, logoff, logon, success,
and welcome. Several class
invariants were generated, but
only “this.getServlet() != null”
looks like a worthwhile asser-
tion.
 Focusing on the execute
method, only two of the four

result partitions would ever happen,
so we mark the global forwards “reg-
istration,” “logoff,” and “welcome” as
unexpected. For a normal return, only
the observation “@RETURN!=!null”
seems like a worthy assertion.
 However, all trials returned logon
and none succeeded. Looking at the
code, we can see that a User object
isn’t being found, and so all the tri-
als are being returned to the logon
outcome. This makes perfect sense; we
just have to provide a valid User object
to some of the trials as we saw done in
the webinar. In the webinar, an omni-
scient architect had already provided
a session factory that created a User
object. This being real life, we’ll have to
roll our own.
 The execute method calls a helper
to fetch the User object. Looking at

Table 1 Code Coverage

Class Initial Coverage Description
MemorySubscription 100% JavaBean representing a subscription to an e-mail list
MemoryUser 100% JavaBean representing a user with zero or more subscriptions
TestUserDatabase 100% A UserDatabase implementation designed to test runtime exceptions
MemoryDatabasePlugIn 70% An adapter that loads a MemoryDatabase from an XML document
MemoryDatabase 38% An implementation of a UserDatabase interface that stores the list of users and subscriptions in memory

57September 2006JDJ.SYS-CON.com

product rEViEw

the code coverage panel for the getUser
helper method, we can see that the database
parameter is usually null, and when it’s not,
the User object is null. As a result, the code
always returns a message, and the execute
method always forwards to logon instead of
success.
 Hmmm. Why is the database parameter
ever not null? We haven’t set up a session
factory for it and the methods that could
read it from a file have been disabled. What
gives?
 True, right now, when we call getUser
from the execute method, the database
parameter would always be null, but Agita-
tor also tests each method in isolation.
When we ran a full Agitation against the
code base, Agitator also called getUser itself,
and used its own default factory to create
the database parameter. When Agitator
called getUser, it mixed up the calls null with
default instantiations of MemoryUserDase
and TestUserDatabase. We didn’t tell Agita-
tor to do that. This is the automatic default
behavior we get out of the box.
 We already have a TestUserDatabase
object that exercises exception handling. To
that we can add a static getTestUserData-
base method that will return an instance of
TestUserDatabase populated with User and
Subscription objects. Creating the method
means a bit more coding, but not so much,
and now we’ll be able to test the product in-
dependently of the XML document parsing.
 Once the method is coded, we can
right-click on the Factory Assignment view,
choose “Assign a Factory form a Constructor
or Method,” and specify our new method.

The code under test does validate that the
database is not null, so we should pass some
nulls to exercise that code. A simple solution
is to leave the original factory running, but
specify a weight of 1, and change the weight
on our own factory to 9. This way, we will
get some nulls and empty databases, but
most often we will get a copy of our seed
database.
 After Agitating, we have more coverage,
but we’re still ending up with a null User
on every trial. Checking the Snapshot, it’s
easy to see that the username and password
parameters need factories too. When we
right-click on the factory assignment for
username, this time we’re offered the chance
to “Assign a list of values” to our string
parameter. The values item leads directly
to the Factory Settings dialog, where we
can quickly add a couple of usernames. We
repeat the process for password, so that the
first items on each list are valid username
and password credentials. The factories will
mix these entries up, so that we get a spread
of valid and invalid logon attempts. Since
the code doesn’t validate the username and
password variables, we disable the default
factories by setting the weight to zero.
 With these changes, we now have 100%
coverage on the getUser helper, but from
the Outcomes view we can see that some
trials are still throwing exceptions. Checking
the Observations, we see that every time an
Exception is thrown errors is null. The API
contract for this sub-routine implies that
errors should never be null.
 We make that change to the default
setting for the errors parameter and the

unexpected Exceptions disappear. To seal
the contract, we promote the Observation
“@PRE(errors.messages) != null” to an Asser-
tion. Now if the contract is ever broken due
to future code modifications, Agitator will
mark the getUser method with a red mark
and exclaim “errors == null.”
 If we Agitate the LogonAction execute
method, we see that getUser is still returning
errors each time. Of course this is because,
in this case, the database, username, and
password values are still coming from the
default factories. As shown in the webinar,
we promote our new factories to package
scope so that we can use them with other
methods.
 Under the Factory Assignments for
LogonExecute, we find that the Expert has
correctly wired a LogonForm factory to the
“form” parameter. Problem is we need the
factory to include both correct and incorrect
credentials. After some trial and error, we
manage to replace the default factories with
new Form Property Factories that return
usernames and passwords from the lists we
created for getUser and promoted to pack-
age scope.
 Note: When creating factories be sure
to scroll down and review all the available
fields. For example, the last field on the
Form Property Factory form is classname,
which must be set to org.apache.struts.
config.FormPropertyConfig.
 One red mark remains. Agitator no-
ticed that the getUser helper can throw an
ExpiredPasswordException, but none of our
trials threw that exception. As it happens,
the TestUserDatabase class is designed to
thrown that exception if a certain username
value is passed, so all we need to do is add
that magic value to our factory. One last Agi-
tation, and LogonAction is clear. The code
coverage for the class is not 100% mainly
because the logging statements aren’t being
reached, but all the domain code is being
exercised.
 Using the Agitator, we’ve gone from a
standing start to having solid code coverage
and a series of tests. We haven’t written any
JUnit code, but with Agitator’s assertions we
have a set of test assets that will automati-
cally evolve as code is updated. Looking
around in the manuals, it becomes clear
that if somebody decided to write JUnit
tests, those would work in tandem with
Agitators and show up in the same summary
statistics.
 Agitator isn’t a bad way to answer the
question, “How are we going to create tests
for our code base?” Figure 1

JDJ.SYS-CON.com58 September 2006

2 3

C
O

P
Y

R
IG

H
T

 ©
20

06
 S

Y
S

-C
O

N
 M

E
D

IA

 A
LL

 R
IG

H
T

S
 R

E
S

E
R

V
E

D

he PDF file format has become the
gold standard of document distribu-
tion and archiving. It’s therefore
virtually certain that data critical

to your organization is sitting quietly in
PDF documents somewhere. This situa-
tion means you have to get serious about
integrating PDF content into your applica-
tions – taking shortcuts in this area and not
finding or leveraging that mission-critical
data can lead to millions of dollars in lost
sales and/or similar levels of increased
costs, compliance difficulties, or liability
entanglements. It’s time to use a high-
performance PDF component that will
yield accurate text and metadata extracts
suitable for use with your existing search,
content management, text analysis/min-
ing, CRM, or other system(s).
 However, the PDF file format is complex
and wasn’t designed for content extraction.
So, any PDF library that doesn’t specialize
in content extraction is likely to exhibit
various undesirable traits:
• Poor performance or performance deg-

radation in high-volume environments
• Poor text extract accuracy
• Incomplete PDF file format support
• Lack of or limited support for extract-

ing Unicode text, including Chinese,
Japanese, and Korean text

• A complicated API that requires know-
ing the PDF file format

• Lack of any tools for identifying and
converting unstructured data

 If the PDF library you’re using exhibits any
of these problems then it’s time to upgrade to
an enterprise-class component that special-
izes in content extraction. And if your appli-
cation doesn’t leverage PDF content then it
makes sense to skip the training wheels and
use the best tool for the job from the start.
 PDFTextStream fits the bill either way.
A pure Java library (also available for .NET
and Python), PDFTextStream specializes
in extracting text and metadata from PDF
documents. Because of its focus, PDFText-
Stream has none of the downside all too

common when using a general-purpose
PDF library for content extraction pur-
poses.
 This introduction will cover just a few of
the use cases where PDFTextStream’s focus
on content extraction yields significant
value.

Simple/Powerful Text Extraction
 PDF documents specify their text
content a character at a time without any
indication of each page’s physical layout
(such as lines, paragraphs, columns, tables,
etc.). Thankfully, PDFTextStream auto-
matically derives these structures for every
page it extracts using state-of-the-art page
segmentation and read-ordering processes
– similar to how an OCR application de-
rives the structure of a scanned document.
And thankfully again, this accuracy doesn’t
come at the expense of speed or ease of
use.
 Now for some code. As you can see,
extracting text using PDFTextStream is
super-simple:

StringBuffer	pdfText	=	new	StringBuffer(1024);

com.snowtide.pdf.OutputTarget	tgt	=	new	

com.snowtide.pdf.OutputTarget(pdfText);

PDFTextStream	stream	=	new	

PDFTextStream(pdfFile);

stream.pipe(tgt);

stream.close();

 The full text of the PDF file is now avail-
able in the pdfText StringBuffer.
 OutputTarget is the default implementa-
tion of the com.snowtide.pdf.OutputHan-
dler interface, which can be thought of
as a SAX interface for PDFTextStream
document model events. These events are
generated any time an OutputHandler is
passed into a pipe(OutputHandler) func-
tion, which is available on many document
model objects as well (com.snowtide.pdf.
Page, com.snowtide.pdf.layout.Block, and
com.snowtide.pdf.layout.Line).
 OutputTarget’s primary purpose is to
provide a straightforward way to direct

extracted text to a StringBuffer or a java.
io.Writer. Further, OutputTarget passes
through PDFTextStream’s default text
layout: content is in the proper semantic
order, columns of text are separated, and
rotated text is normalized and grouped in
reasonable ways. This is really important
if the PDF text you’re extracting is going to
be used as input to a semantically sensi-
tive process, such as text mining or search
engine indexing.
 There are many OutputHandler imple-
mentations included with PDFTextStream,
each of which interprets and processes
PDF text events differently. If none of them
meet your application’s needs, you can eas-
ily write your own.

Unicode Text Extraction
 Today’s global economy demands that
your application be world-ready, in any
major language. Thankfully, PDFText-
Stream always extracts text from PDF
documents as Unicode (a perfect match
for Java’s consistent and thorough Unicode
support). Further, PDFTextStream extracts
Chinese, Japanese, and Korean (CJK) text
from PDF documents without any perfor-
mance penalties.
 Nothing special needs to be done to
enable these capabilities – they’re always
on, so you can use the simplest code and
always get Unicode and CJK text out of
your source PDF documents.

Search Engine Integration
PDFTextStream was designed to be easily
integrated into other applications, including
content management systems, text mining
processes, and, of course, search engines.
A great example is its Lucene integration
module, which produces Lucene documents
using the content extracted from PDF files.
Building a Lucene document that contains
all of the text in a PDF file requires one line
of code:

Document	luceneDoc	=	com.snowtide.pdf.lucene.

PDFDocumentFactory.buildPDFDocument(pdfFile);

FirSt look

by Chas Emerick

Getting Serious About
PDF Content Integration

T
An introduction to enterprise-class PDF text and metadata extraction

Chas Emerick

is founder,

Snowtide

Informatics

System.

JDJ.SYS-CON.com60 September 2006

 The contents of the Lucene document,
including whether PDF document attributes
(such as author’s name, title, creation date,
etc.) should be included, as well as the Lucene
document’s indexing, tokenizing, and storage
parameters can all be customized (via com.
snowtide.pdf.lucene.DocumentFactoryCon-
fig).
 Also of interest to those who work with
search engines, PDFTextStream enables Web
crawlers to source new URLs to retrieve from
PDF documents – see Enabling PDF Web
Crawling below.

Metadata, Metadata Everywhere
 Utilizing the metadata embedded in many
PDF documents can add a great deal of value
to your applications. PDFTextStream gives you
easy access to the full world of PDF metadata:
• Document attributes (as a key/value Map

or in Adobe XMP XML format)
• Document outline/bookmarks
• Acroform data – interactive form data
• PDF annotations (text notes, embedded

URL links, etc.)

 There’s clearly a ton of metadata that you
could work with; let’s dig into a couple ex-
amples.

The Bulk Metadata Import
 Consider a scenario where you need to load
PDF documents into a content management
system. A common requirement would be for
each document’s author, title, and creation
date to be imported as well. Let’s retrieve those
attributes:

PDFTextStream	stream	=	new	PDFTextStream(pdfFile);

Object	author	=	stream.getAttribute(PDFTextStream.

ATTR_AUTHOR);

Object	title	=	stream.getAttribute(PDFTextStream.

ATTR_TITLE);

Object	createDtStr	=	stream.getAttribute(PDFTextStr

eam.ATTR_CREATION_DATE);

Date	createDt	=	null;

if	(createDtStr	!=	null	&&	createDtStr	instanceof	

String)

createDt	=	PDFDateParser.parseDateString((String)c

reateDtStr);

 From here, you could easily add the meta-
data associated with each PDF document to
the CMS. This code is straightforward, but
there are some points worth noting:
• The PDFTextStream class provides a set of

attribute name constants, making standard
attribute lookups easy.

• The getAttribute(String) function returns an
Object, not a String – this is because PDF
files can technically specify attribute values
of various types.

• PDF date strings have a standard format;

the com.snowtide.pdf.PDFDateParser.
parseDateString(String) function can be
used to convert PDF date Strings into java.
util.Date objects.

Enabling PDF Web Crawling
 PDF documents can contain Internet
URLs, but many Web crawlers don’t look for
and follow such links. Here, we’ll retrieve the
embedded PDF annotations that contain URL
links, which could then be retrieved by a Web
crawler.

PDFTextStream	stream	=	new	PDFTextStream(pdfFile);

List<Annotation>	annots	=		

			stream.getAllAnnotations();

ArrayList<String>	uriList	=	new	

ArrayList<String>();

for	(Annotation	annot	:	annots)	{

				if	(annot	instanceof	com.snowtide.pdf.annot.

LinkAnnotation)	{

								LinkAnnotation	link	=	

(LinkAnnotation)annot;

								if	(link.getLinkActionName().equals(“URI”))

												uriList.add(link.getURI());

				}

}

 This example will add all of the available
URLs in the PDF document to the uriList Ar-
rayList. The process is very simple: find all of
the PDF annotations of type com.snowtide.
pdf.annot.LinkAnnotation, and ignore any
LinkAnnotations that do not have an “action
name” of URI. There are a variety of link action
names, each of which have different behaviors
in a PDF viewer. Only URI LinkAnnotations
contain a URL, which is retrieved using the
getURI() function.

Identifying and Converting Unstructured
Data
 Coping with “unstructured” data is a popu-
lar topic these days, mostly because:
• It’s being recognized that unstructured data

represents most of the data generated and
received by most organizations

• Significant operational advantages can be
achieved only if organizations can identify,
convert, and harness the available unstruc-
tured data

 Given that PDF documents are a primary
vehicle for unstructured data, it’s worth noting
that PDFTextStream provides some tools to
make extracting this data easier. The use of
these tools is beyond the scope of this article,
so please refer to the PDFTextStream docu-
mentation for details.
 First, PDFTextStream provides a table API
(com.snowtide.pdf.layout.Table) that repre-
sents the data of any table that PDFTextStream
can detect while processing a PDF document.

This API can be used as the basis of a process
that converts tabular data found in PDF docu-
ments into CSV or Excel files, or directly into
database records.
 Secondly, for broader unstructured data
conversion purposes (or for tabular data that
can’t be detected automatically through its
table API), PDFTextStream provides VisualOut-
putTarget, an OutputHandler implementation
that renders PDF text to a StringBuffer or java.
io.Writer while maintaining the visual layout
of each page of text. This maintains the visual
alignment of table columns and other textual
elements, which makes text extracts retrieved
using VisualOutputTarget ideal for input into
downstream text analysis and mining tools.

Conclusion: Enterprise-Class, Indeed
 The term “enterprise-class” typically means
that a component is robust – that it can take a
beating and still keep going, while maintain-
ing high performance levels.
 That describes PDFTextStream quite well.
It’s feature-rich, it has a high degree of PDF
file format support, and it’s just plain fast: in
extensive benchmarking (conducted by Snow-
tide Informatics and posted for review and
verification on its Web site), PDFTextStream is
shown to be 223% -1,141% faster than all other
Java PDF libraries that are capable of text
extraction. Even better, PDFTextStream clocks
in as 13% faster than pdftotext, the popular
native C/C++ PDF text extraction utility that’s
part of the Xpdf project.
 There’s a right tool for every job, and in
general, it’s better to use a tool that is designed
for the specific job at hand. Accurately extracting
text and metadata from PDF documents with
high levels of performance is a surprisingly diffi-
cult job that presents a complex set of problems.
Given the importance of finding and accessing
critical data available only in PDF documents,
it makes sense to use a PDF content extraction
library designed from the ground up to solve
these problems expertly and without compro-
mises. Doing so will ensure that your application
and your users receive the greatest benefits of
enterprise-class PDF content integration.

References
• Snowtide Informatics, publisher of

PDFTextStream: http://snowtide.com
• PDFTextStream developer resources: http://

snowtide.com/Support
• PDF text extraction benchmarks: http://

snowtide.com/Performance.
• Adobe Extensible Metadata Platform (XMP):

http://www.adobe.com/products/xmp/
main.html

• Apache Lucene project: http://lucene.
apache.org

• Xpdf project (home of pdftotext): http://
foolabs.com/xpdf/

61September 2006JDJ.SYS-CON.com

e’ll be coming to the rescue
and offering the training
program virtually, yes, from
the JCP.org site itself starting

this September
 Most JCP Program activity happens
virtually except for a few times a year
when the JCP takes to the road to deliver
training sessions around the world. Such
was the case this June and July. The
training marathon started in Sweden.
The JCP Program Management Office
(PMO) took advantage of the face-to-face
JCP Executive Committee (EC) meeting
hosted by Sony Ericsson in Stockholm
to train newer EC representatives and
their alternates about the workings of the
process. Then it traveled to Rome and
Milan where sessions were delivered to
Java developers and marketers attend-
ing the Italian Java Conference. The next
stop was in Versailles where the training
happened in conjunction with JavaDay
2006. Participants learned more about
JCP membership, the process, and what
it means to be a spec lead, expert, and EC
member.
 But you may be among those Java
fans who didn’t have a chance to attend
the JCP training sessions in person back
in February this year in Santa Clara, CA
or at JavaOne in San Francisco in May
or couldn’t catch any of the JCP train-
ing events in Europe either. So here’s a
mental bookmark for you to make. We’ll
be coming to the rescue and offering the
training program virtually, yes, from the
JCP.org site itself starting this September.
 So whether you have a broad inter-
est in Java technology or Java standards
development and maintenance or you’re
looking to learn the basics of the JCP, or
becoming a spec lead or simply want a re-
fresher about the program, you’ll be able
to tap into this training resource virtually.
Most becoming for a global community
like the JCP.
 Here’s a bit of what you should expect
from the Web-based training. First off
you’ll become knowledgeable about the
body that develops standards for the Java
platform – the Java Community Process
(JCP) Program, what it’s all about, how
you can leverage it to support your Java

endeavors, and how you can work with
the PMO to get help in carrying out your
Java projects.
 Second, you’ll learn about the rigorous
JCP Java Specification Requests (JSR)
review process and its mechanics from
the members of the PMO who manage it
on a daily basis.
 Third, you’ll get a better feeling what
it means to be a spec lead and what the
intricacies of this role are. Becoming a
JSR spec lead and acting to expectations
as a lead doesn’t happen over night. Even
experienced spec leads feel challenged
when confronted with the rigors of de-
veloping a standard through the process.
The JCP training sessions will give you the
information you’ll need to ride out the
process effectively, make JSR deadlines,
and develop a healthy relationship with
expert groups – yours and others – as well
as with other participants in the process.
 Fourth, you’ll acquire knowledge in-
dispensable to developing a JSR proposal
and taking the key JSRs deliverables to the
finish line. Putting a standards proposal
together has its specifics — that’s why
your experienced trainers will walk you
through what’s required to develop it for
the JCP. You’ll have the opportunity to ask
them questions and discuss the details of
the Technology Compatibility Kit (TCK).
 And last you’ll acquire community sav-
vy that you can pass on to your colleagues
be they project managers, marketers,
sales gurus, or simply Java fans.
 The wealth of information and knowl-
edge you’ll acquire in the JCP training will
help transform you into a more effective
player in your Java ecosystem. And the
skills you learn are transferable — you’ll
be able to pass them along to help col-
leagues succeed with their Java projects.
It will give you the training references and
support that will meaningfully enhance
your Java experience in a variety of roles
you may currently have or take on in the
future.
 Another way of finding out more about
the JCP Program, its workings, how you
can get involved, and the latest changes
is by attending the community panels,
which we host at a variety of industry
events. For instance, the one I moderated

one in early June at the TheServerSide.
com Java Symposium in Barcelona. I was
joined on the panel by Jon Bostrum, se-
nior director of Java technology platforms
for Nokia, co-leader of the Mobile Expert
Group and co-spec lead for JSR 232;
Cameron Purdy, founder and president
of Tangosol and spec lead of JSR 107; Tom
Baeyens, founder and lead developer of
JBoss jBPM; Mike Keith from Oracle, co-
spec lead of EJB 3.0, co-author of /Pro EJB
3: Java Persistence API/, and a Java EE 5
expert group member. We fielded mainly
questions from the audience about the
strengths and weaknesses of the process,
what role individual developers can play
in the process, and what it’s like to be a
spec lead. Developers made recommen-
dations for more transparency and public
scrutiny in the early specification stages,
more active participation by individual
members, less bureaucracy, and better
communications among JSRs. They also
commented on what they believe to be a
strong benefit of the JCP – the diversity of
opinions that goes into the specifications
and the fact that the leading experts in
a particular field can lead a project. We
went on to compare Open Source com-
munities with the JCP which helped the
audience understand better the differenc-
es and similarities. The panel was also an
excellent opportunity for me to express
my views on how individual members
sign up. It’s one aspect of the process
that I wish will be streamlined sooner
rather than later to make it even easier
for individual developers to get involved.
Right now there’s a lot of opportunity for
them to participate but there’s still plenty
of room to grow.
 It was an equally beneficial exer-
cise for us panelists to get people’s
ideas on how to continue to increase
transparency in the early stages of
specifications, limit bureaucracy to the
minimum needed, and help improve
communication among JSRs especially
among the Expert Groups of related
specifications.
 To find out more about the panel and
hear the diversity of opinions expressed
tune in to http://www.theserverside.com/
news/thread.tss?thread_id=41753 .

JSr watch

by Onno KluytJCP Bookmarks

W
Program training goes virtual

Onno Kluyt is the

chairperson of the

JCP Program Man-

agement Office,

Sun Microsystems

onno@jcp.org.

JDJ.SYS-CON.com62 September 2006

